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Abstract

Stock markets are the result of the interaction of multiple participants, and market makers are one of them. Their main goal
is to provide liquidity and market depth to the stock market by streaming bids and offers at both sides of the order book, at
different price levels. This activity allows the rest of the participants to have more available prices to buy or sell stocks. In
the last years, reinforcement learning market maker agents have been able to be profitable. But profit is not the only measure
to evaluate the quality of a market maker. Inventory management arises as a risk source that must be under control. In this
paper, we focus on inventory risk management designing an adaptive reward function able to control inventory depending on
designer preferences. To achieve this, we introduce two control coefficients, AIIF (Alpha Inventory Impact Factor) and DITF
(Dynamic Inventory Threshold Factor), which modulate dynamically the behavior of the market maker agent according to
its evolving liquidity with good results. In addition, we analyze the impact of these factors in the trading operative, detailing
the underlying strategies performed by these intelligent agents in terms of operative, profitability and inventory management.
Last, we present a comparison with other existing reward functions to illustrate the robustness of our approach.

Keywords Reinforcement learning - Market-making - Stock markets - Inventory risk management - Stochastic dynamic
control - Artificial intelligence

1 Introduction

Every stock market is composed of different types of partici-
pants with diverse goals [1]. Retail traders, big corporations,
arbitrage systems [2], and high-frequency operators [3] are
some examples. Market makers (MM) are a specific type
of participant whose main objective is to provide liquidity
to the stock markets (Fig. 1). They accomplish this task by
streaming buy and sell orders at different sides of the order
book (OB), feeding this OB with more alternative prices
to trade with. The OB is an electronic list of buy and sell
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orders that is constantly updated incorporating the new arriv-
ing limit orders, and removing those orders that have been
already matched as well. Hence, it contains the available limit
orders at every moment, in terms of price and amount of
stock, of all the participants. The market-making task is espe-
cially relevant in those assets with low liquidity, as it allows
traders to have extra price levels to operate with. Addition-
ally, MMs usually earn trading profits by buying and selling
these stocks. These trading profits come mainly from the
bid-ask spread [4] of the stock market. In a nutshell, bid-ask
spread represents the difference between the lowest price a
seller is willing to buy the stock and the highest price a buyer
is willing to buy. Every stock has a specific bid-ask spread
depending on the liquidity of that asset (available orders), and
it changes over time according to different circumstances. It
is usually higher in markets with low liquidity. Regarding
MM, the higher bid-ask spread the asset has, the more trad-
ing profits it will earn per operation.

In trading, holding inventory usually increases the risk of
any agent, as its Mark-To-Market (MtM) is more exposed
to price movements. MtM is a method of measuring the real
value of an agent, and it is calculated by combining the avail-
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Fig. 1 Example of the impact of a MM in a low liquidity asset order book. A MM usually populates the Order Book allowing the rest of the

Market’s participants to have more prices to trade with

able cash plus the value of the inventory as if it was sold at
that specific moment. It is critical to have good management
of the accumulated inventory along the trading operative to
mitigate possible risks, like a sudden devaluation of the asset.

Therefore, the definition of a good market-making strat-
egy relies on two main goals: Increasing profits by buying and
selling stocks, while reducing the risks of holding inventory.
We can define the problem as a multi-objective challenge,
where both objectives are inversely related. In classical multi-
objective optimization problems, we have alternative ways
to solve this, such as finding a Pareto front to take the
non-dominated policies according to a prior utility function
[5-7]. Focusing on RL, the usual approximation of solving
multi-objective problems is to define a reward function that
aggregates both objectives as a single scalar value. The def-
inition of this reward function usually requires the domain’s
understanding and prior knowledge of the utility function [8].

Market-making inventory management through Rein-
forcement Learning (RL) is a topic that has been addressed by
some authors, as it is broadly described in Section 2. How-
ever, most of those solutions rely on adding some sort of
penalty term to the reward function, an action that reduces the
reward obtained at every time step according to the full inven-
tory value or its value variation. In some cases, this penalty
is computed at the end of the trading sessions by remov-
ing the full value of this inventory. Nevertheless, both kind
of approaches does not take into consideration the changing
conditions of the MM along the trading session, penalizing
linearly the accumulated inventory.

To address this issue, we define two coefficients that mod-
ulate the inventory exposure: Alpha Inventory Impact Factor
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(AIIF) and Dynamic Inventory Threshold Factor (DITF).
These two  coefficients, widely described in
Section 4, determine the behavior of the MM through the
definition of a dynamic inventory threshold, managing the
inventory dynamically at every time step through its contribu-
tion to the reward function. Furthermore, we demonstrate this
approach has good results in terms of MtM and inventory risk
management, detailing variables such as profitability, inven-
tory distributions, and the semantics of the policies adopted
by the RL agent.

Therefore, in this manuscript, we show how to design
an intelligent RL market maker agent that can be profitable
while managing inventory risk dynamically and adaptively,
through a novel reward function. This agent takes into
account its changing situation, in terms of liquidity, adapt-
ing its policy through the trading sessions. Additionally, we
analyze in-depth the underlying policies to understand the
behavior of different risk-averse agents. We also run a com-
parison against other existing reward functions to evaluate
the performance of our solution.

Regarding the organization of the remainder of the paper,
Section 2 discusses the current state of art. Section 3
introduces Reinforcement Learning as a control technique.
Section 4 details our MM agent, including the proposed
reward function. Section 5 describes the environment and
all the details of the experimental setup. Section 6 analyses
the results of the proposed MM, including a comparison with
other existing approaches. Finally, Section 7 presents all the
conclusions derived from our study. The datasets generated
during the current study are available in the GIT repository,
https://github.com/ofvicente/automated_mm_paper.
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2 Related work

Market-making strategies have been broadly studied not only
from a classical approach but even using cutting-edge tech-
niques, including RL [9]. In the following subsections, we
will take a look at both of them, to have a better understanding
of the main problems addressed and the proposed solutions.

2.1 Market-making as a classic financial problem

From a financial point of view, this problem has been
addressed for many years and even decades. One of the most
important contributions and a reference was made by Avel-
laneda and Stoikov [10], where they combine the Ho and Stoll
[11] framework with the microstructure of the OB, based on
the current inventory and a calculated reservation price. In a
nutshell, they try to find a symmetrical optimal spread based
on areference price and a pre-defined inventory strategy. The
reference price is conditioned by the imbalance between buy
and sell orders placed in the OB. This reservation price is
calculated with the following terms: (i) the current mid-price
of the stock, (ii) the inventory they want to hold under the
strategy, (iii) a risk aversion coefficient, and (iv) the volatility
of the traded asset. With this reservation price, and including
another additional term that represents the liquidity (density)
of the OB, they calculate an optimal spread that fits the initial
strategy.

This work by Avellaneda and Stoikov has inspired other

authors, such as Gueant et al. [12], who introduce an
evolution with a new change of variables based on Hamilton-
Jacobi-Bellman equations and a limited inventory to improve
the model. More recently, the same author introduced another
solution based also on Avellaneda’s framework where they
face the problem of multi-asset market-making, addressing
the challenge of managing correlated assets [13]. All these
works at the end of the day propose an evolution of this first
work, by focusing on certain points.
Excluding Avellaneda’s approaches, there are other works
that deal with this problem. For example, regarding HFT!
and its underlying challenges, some authors [14] propose
specific solutions based on a previous liquidity analysis of
these environments. The analysis of liquidity as a predictor
of future movements is not only used in market-making tasks
but also gives us insights into the underlying short-term price
intentions.

As we have seen, many different paths have been followed
to address the market-making challenge. Some of them are
based on the order book, while others are more focused on
liquidity, etc.

! High-Frequency Trading

2.2 Market-making as a machine learning problem

Apart from classical and pure mathematical approaches
presented in Section 2.1, there are also some interesting
works in the context of Machine Learning (ML). Recently,
ML has been successfully used for solving a wide variety of
tasks [15-19].

With respect to ML in trading, works can be divided into
two different categories. The first one relates to Supervised
Learning (SL), where the researchers try to model or predict
some value of the market itself. And a second one, based
on RL, where the technique and method are quite different,
trying in this sense to model an agent that can participate in
the market following a learned policy.

Regarding the first category, SL is used in some works [20]
to design trading signals based on previous data. SL signals
are usually the trigger for different trading actions. These sig-
nals are commonly generated using different sources: from
the OB, news, and other alternative data sources. Addition-
ally, SL is usually used to predict future values (such as future
short-time stock prices [21]), valuable information that helps
the MM to find better strategies.

While SL may be successful in achieving specific goals,
RL is more suitable for tasks that involve decision-making
or sequential control. And market-making (with inventory
control) may be more accurately included in this second
group. In this sense, there are also multiple lines of work.
The main purpose of these works is to design some sort of
intelligent agent able to act as a profitable MM, by defining
(generally) a good reward function. However, many of the
market-making RL strategies found do not take into account
inventory risk, focusing only on maximizing the PnL2. For
instance, Vicente et al. [22] design a profitable MM agent
that competes in a multi-agent environment, optimizing only
the MtM. They also study the transferring of certain learned
policies among different environments. Other works are also
based on the use of trading signals, such as mentioned in SL
above. For instance Lokhacheva et al. [23] implement a Q-
Learning agent based on these trading signals, where EMA?
and RSI* are used basically to define the space state.

All these mentioned works do not consider inventory
risk, which is an important weakness. Regarding those RL
researchers that make a special focus on inventory manage-
ment and the derived risks, we find two main approaches:

e Some works penalize the changes in the inventory held
during the trading session. In this regard, there are at
least two main alternatives: (a) apply a penalty only on
inventory changes [24, 25], and (b) apply a penalty on the
entire inventory held [26, 27] to discourage any kind of

2 PnL: Profit and losses, earnings.

3 Exponential Moving Average

4 Relative Strength Index
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asset accumulation. In both cases, a penalty term impacts
directly the reward function in a fixed and predefined size.
An aversion coefficient is usually included.

e Other approaches [28-30] penalize the inventory held
by the RL agent only at the end of the episodes. In this
sense, CARAS utility is used frequently to determine risk
aversion.

All these works rely on static reward functions. They do
not consider the changing situation of the trading (MM)
agent. In this sense, it is worth remarking that having a very
restrictive reward function usually impacts negatively on the
total returns, as the agent behaves more cautiously. More-
over, a fixed penalty term, similar to the reward functions
of the works presented above, may have similar undesirable
results, as the MM agent is not able to adapt to the evolving
circumstances. In most of the aforementioned works, this is
an extended approach, and therefore, a weakness. The MM’s
Mark-to-Market changes along a trading session according
to its operative, not only in terms of the total value but in
its cash/inventory value proportion. For instance, as long
as the MM increases its MtM following a profitable strat-
egy, increasing its cash, it seems logical that it should have
more room to inventory if this enables the agent to perform
a more profitable policy. According to this, our agent could
be more aggressive in searching for profits while containing
risks. This adapting penalty term is the base, and one of the
strengths, of our contribution.

3 Reinforcement Learning

Reinforcement learning [31] is a type of machine learning in
which agents learn to perform tasks by interacting with their
environment. These agents optimize their actions to learn
the best way to complete a task. To achieve this, RL agents
receive positive or negative rewards from those performed
actions, adjusting their policies to obtain the best present
and future rewards. These tasks are usually described as a
Markov decision process (MDP), as they can be represented
as a sequence of states. They are expressed by the following
tuple: M = (S, A, T, R), where S corresponds to the state
space representation, A to the action space, T to the transi-
tion function between states, and finally R corresponds to the
immediate rewards earned after every action taken. RL has
been successfully applied to both deterministic and stochas-
tic environments. Financial Markets are generally considered
a stochastic domain because many players interact by buy-
ing and selling stocks in a common environment with

5 Constant Absolute Risk Aversion
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limited/imperfect information about the underlying dynam-
ics and intentions. This imperfect information translates into
uncertainty for all the uninformed participants. In addition,
if we put trading fees aside, trading can be considered a zero-
sum game, where profits and losses are balanced among all
the agents. Therefore, being consistently profitable is not an
easy task. Some variables are generally used to estimate the
stock environment at time ¢, such as price dynamics, trading
volume, order book status, and/or many indicators derived
from these basic inputs. Trading agents must find a profitable
policy 7 using these variables.

There are many different approaches to design an RL
control agent. In this paper, we use a model-free [32,
33] off-policy and value-based RL agent called Deep Q-
Network DQN [34]. DQN is considered an evolution of
Q-learning [35] algorithm, where a deep neural network
(NN) is used to approximate the value function instead
of a Q-table. This is necessary when we have multivari-
ate continuous space states like in the solution presented
here. Basically, value-based algorithms estimate the expected
value of being in a specific state V (s), or even the combina-
tion of state and action Q(s, a), to find the best policy and
the most profitable behavior in terms of present and future
rewards.

In particular, DQN relies on a Q-function where every
action taken at one specific state following the policy 7 has
an expected value Q7 (s, a). This value Q7 (s, a) is defined
as the following expected return (1):

o0

Q"(s,a) =E|Y y'rulsi=s,a=a,x (1)
k=0

where y represents the discount factor. This factor deter-
mines the weight given to future rewards. Therefore, when
y = 0 only immediate reward is considered. The return is
considered expected due to the non-deterministic nature of
this specific domain.

DQN is not an episodic algorithm, which means that
rewards can be computed and policies can be updated
without waiting until the end of an episode. However,
it bootstraps the rewards along the different time steps
according to the former function. Additionally, this algo-
rithm includes that improves learning. First, it has two
identical deep neural networks instead of one. One neural
network makes updates constantly with new experiences,
while the second one synchronizes every n time step to
avoid instabilities taking actions. Second, there is a replay
buffer that stores all the experiences and is used to train
the neural network. This replay buffer dispatches experi-
ences randomly, removing correlations in the observations
sequence.
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4 New RL model for inventory management

In order to control the MM inventory, an RL agent has two
main levers to interact with. On one hand, it can increase buys
or sells if it wants to increase or reduce inventory respectively.
Both actions can be achieved by populating more competi-
tive buy over sell prices, or vice versa, depending on the
desired goal. With this “skewness” the MM inventory will
be increased or decreased accordingly along the trading ses-
sion due to that imbalance. On the other hand, every agent has
the option of selling stocks (or buying) in the market at every
moment. This action, usually known as hedging, allows the
agent to reduce almost instantly the desired level of inven-
tory held. The main problem with this alternative is that every
hedging action is executed by matching a market-order. This
means that it has a cost, as every market-order has to pay the
current market spread.

Restrictive penalty terms or risk-averse policies usually
impact negatively on final returns, as the agent has to be more
cautious when operating. Generally, low restrictive penalty
terms will translate into higher and even more volatile returns.
Finding an equilibrium between both goals, to earn profits
and to manage risks, should be the main objective of every
operator. According to this, non-adapting penalty terms as
stated in previous works cannot be optimal by definition.
The idea behind our reward function is that the MMs should
be able to hold, and thereby, manage the greater or lesser
amount of inventory in response to changing conditions of
the agent during the trading session. Therefore, if a MM is
operating along a trading session its situation in terms of
MtM and Cash/Inventory value evolves as well. This chang-
ing situation should be considered to adapt the inventory
holding strategy in order to improve the profits. For instance,
the trading strategy should not be the same when having
a 50%-50% cash/inventory value ratio, 80%-20%, or 20%-
80%. In the first case, an 80% cash and 20% inventory ratio,
we could allow the inventory to be increased if that action
could increase our profits as well, caused by following a less
restrictive policy. The opposite should happen in a 20%-80%
scenario, where inventory risk should be managed more care-
fully according to that imbalance. These proportions may
also change during the trading session, forcing the MM to
adapt its policy accordingly aiming to find the best policy.
This is why the MM operating strategy should not only be
a matter of keeping inventory always close to 0 units, or a
matter of applying always a linear penalty term but finding
a balance that improves profits while managing inventory
risk.

In the following section, we describe how these concepts
were incorporated into the reward function. After that, the
state and action spaces used in this work are also described.
Finally, we detail the training flow performed by the market
maker.

4.1 Reward function

Learning good policies in RL is usually tied to the design
of appropriate reward functions. Reward function engineer-
ing is, in fact, a matter of research by itself [36-39]. The
proposed reward function presented here aims to find the
highest trading profitability in terms of returns while con-
trolling inventory dynamically using a specific penalty factor,
as stated previously. It is important to remark on again the
dynamic nature of our approach, as the penalty factor will
adapt to available cash and inventory value at every moment.
To learn this adapting policy, we have to design a proper
reward function able to be profitable while controlling risks,
by adjusting the operative to the operator’s risk aversion and
also adapting to the changing situation of the MM.

To achieve that, we introduce the following key concepts:

Definition 1 (Dynamic Inventory Threshold Factor (DITF))
factor that determines the reference ratio between the value
of cash and inventory, which must be respected by the agent
throughout the trading session (7).

According to this term, established at the beginning of the
training stage, if we want that the MM agent follows the 1:1
ratio between cash value and inventory value as a reference,
we should assign DIT F = 1. This factor defines a dynamic
threshold (¢hr) throughout the trading session, a threshold
that determines the maximum inventory limit in which MM
must fit at any given time.

Definition 2 (Alfa Inventory Impact Factor (AIIF)) factor
that modulates the agent’s risk aversion by including a coef-
ficient in the penalty term of the reward function (as in (6))

Regarding this factor, the higher this coefficient is, the
stronger penalty the agent will receive from holding inven-
tories out of the allowed threshold, previously defined.

These two concepts will help the agent not only to control
risks while seeking profitability but to achieve it intelli-
gently. We know that both objectives (earn profits and control
inventory) are opposite, and we must find some strategy that
optimizes both. To do that, we could have picked some static
reward function that just “scalarise” both goals according to
some fixed weight, as other works do. But it is important to
remark that as long as the market maker operates in a trad-
ing session, the proportion between cash and inventory value
changes according to the results of the performed strategy.
Hence, it could admit more inventory in some cases than
others, while respecting an overall risk aversion ratio. The
two previous factors introduced above help us in this task.
AIIF factor establishes a general risk aversion threshold that
would be respected along the trading session; while DITF
will modulate the overall risks depending on that evolving
cash/inventory value ratio. These concepts are included in
the penalty term of our reward function.

@ Springer
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We define the reward function as follows:

Definition 3 (The Reward function for Inventory Manage-
ment (RIM)) is a reward function R : O; x Pnl; x Hc¢; X
Pny; — R, computed as defined in (2),

Ri = O; + Pnl; — Hc; — Pny; 2)

The different terms of the reward function are described
as follows:

e (i) O;: The trading profits obtained by the MM at time
step ¢; result from buys or sells. More precisely, as shown
in (3):

n
0; = Z(Bx, Sx) % SpMp,s)i &)

x=0

where (B, Sy) refers to the number of stocks traded
(buys or sells) by investors with the MM, and Sp My, s);
is the buy or sell spread quoted by the MM respectively
at that time step #;. Thereby, the higher the spread quoted
by the MM, the higher the profits earned, as previously
mentioned.

e (ii) Pnl;: The inventory held by the market marker will
gain or lose value according to mid-price variation in
every time step #;. Therefore, if the price rises up the
inventory value will rise as well, and vice versa. This is
what Pnl; reward term refers to, computed as shown in

(4):
Pnl; = inv; * APr; @

where inv; is the quantity of stock held by the MM (pos-
itive or negative) at t;, and A Pr; the difference between
current and previous stock prices: APr; = Pr; — Pri_1.

e (iii) Hc;: The market maker has the option to reduce
its inventory instantly by buying or selling it at every
time step. When doing this, it pays a hedging cost as a
penalty, as it is executed through a market-order. Hedging
costs Hc; are equal to the amount of inventory hedged
multiplied by the market spread Sp;. It is computed as
shown in (5):

HC,‘ =Hg,‘>kSp,' (5)

where Hg; is the amount of inventory hedged, and Sp;
is the current market spread, at ;.

e (iv) Pny;: The last term concerns the penalty of holding
inventory. This term is especially relevant in our approach
as it drives the policy according to the inventory risk.
As introduced previously, market makers should carry
the least amount of inventory possible, according to their
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liquidity situation, to avoid risks caused by price volatil-
ity. To achieve this, it is necessary to establish some
restriction or penalty that discourages the agent to accu-
mulate inventory during the trading session. Particularly,
we have opted for a dynamic term that can adapt to the
MM inventory and cash values at every moment. This
term Pny; impacts the reward as it penalizes the inven-
tory that the MM holds out from a specific range. This
range, or threshold, is not a fixed value, but instead, it
is dynamically adjusted taking into account the desired
proportion between the MM cash value (liquidity) and
the average value of the inventory held in the last n steps.
Hence, we define the penalty term as in (6):

Pny; = AIIF s min{|Ri|, |R; % —=2L)) 6)
thr;
where:
h.
thr; = DITF % |t — %)
n Zx:t—n mldi
1 t
thy = =) thr ®)
t—n
1 t
inv, = - tZinvx ©)
—n

The dynamic threshold ¢hr; (7) is calculated by dividing
the MM cash value at #; by the average of the last n stock
mid-prices mid;. The resultant value is multiplied by
DITF, the Dynamic Inventory Threshold Factor. This
factor defines the proportion between cash and inventory
value mentioned above. This proportion is between the
cash value at #; and the average inventory held in the
last n time steps. We use an average instead of the spot
value to reduce the impact of price volatility and to stabi-
lize convergence. The whole penalty is modulated using
the first coefficient AI/IF, our Alpha Inventory Impact
Factor.

According to (6), it is important to remark that this
penalty term behaves as a piecewise function, where
this penalty increases linearly from inv; = 0 until the
dynamic threshold thr; is reached. The idea behind this
is to have a smooth penalty term that discourages propor-
tionally the accumulation of inventory.

In the experimental Section 6 we describe the impact of
AI I F factor on profitability, inventory management, and
policies.
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4.2 State and action spaces

As with every RL problem definition, some key elements
have to be defined apart from the reward function. On one
hand, the agent must have a good understanding of the envi-
ronment. This is achieved by defining a proper state space
that contains enough valuable information to select the best
possible actions at every time step. On the other hand, it is
necessary to determine the action space, hence, all the actions
that can be performed by the agent. State and action spaces
have been designed based on the previous work of Ganesh
et al. [40], with some adaptations such as the action space’s
discretization. All these elements are detailed as follows.

4.2.1 States

The observation state of our agent consists of 8 features:
(i) the number of stocks bought in the previous time step,
(ii) the number of stocks sold in the previous time step,
(iii) the current inventory size (positive or negative), (iv) the
inventory size in the previous step, (v) the stock mid-price
variation between current and previous time step (APr; =
Pr; — Pri_1), (vi) the current reference bid-ask spread, (vii)
the bid-ask spread in previous time step, and (viii) the total
amount of stock traded (V;), known as volume, by the MM in
previous time step. Other space states have been also tested,
such as more reduced space states, with worse results.

4.2.2 Actions

The MM proposed agent has three possible actions to exe-
cute. First, it can quote a buy price and/or a sell price. These
prices, related to the current market spread, will determine
how many operations are matched and how much trading
profits the agent will earn. In addition, it can decide how
many inventory units hedge through a market-order. To per-
form these actions there are three variables that MMs can
interact with in every time step #;: (i) buy spread B;, (ii)
sell spread S7, and (iii) amount of inventory hedged H;.
With these three variables, a discrete action space has been
defined.

Hence, buy and sell actions will consist of picking one n
in the following list of evenly distributed values respectively:
nw,s)i € {—1,-0.8,-0.6,...,0.6,0.8, 1}.

Therefore, streamed buy/sell spreads (prices) correspond
to (10):

Sp oS
BP, P = Spi x (1 + ngp.s)i) (10)

where Sp; is the current price spread streamed by the market,
and Bl.S P Sl.S P are the spread that MM quotes at time ;. Both
buy and sell 7(,5); can be equal or different, incurring in
asymmetry in the latter case. This asymmetry, also known as

skewness, allows MM to balance between buys and sells if
needed.

In addition to buy or sell actions, hedging action will con-
sist of picking another n from the list n,; € {0, 0.25, 0.5,
0.75, 1}. Depending on the specific 1;,; selected by the agent,
its inventory will be reduced proportionally by 0% to 100%
in the following time step #;41. Thereby, as shown in (11):

invVj+1 = [NV; * Np; (1D

where inv; is the inventory held by the market marker at ;.
Hedging action is not free, as it will incur specific costs as
described in Section 4.1.

In conclusion, the action space consists of 11 buy x 11 sell
x 5 hedge n, represented by the tuple a; = (Mpi, Nsi> Nhi)-
We have opted for this solution instead of using a contin-
uous action space to increase the convergence rate while
sacrificing a more concrete value, which we do not consider
necessary for this exercise. Additionally, using relative values
instead of absolute figures helps our agent to generalize bet-
ter if the domain values change. As an example, having at #;
a market spread of Spi; = 7, an inventory of inv; = 150
units, and the following n returned by the agent a; =
(0.8, —0.2, 0.5), the MM would stream the following values:
BP =7%0.8=5,6,and S** = 7% —0.2 = 6.8. Addition-
ally, inventory would be reduced toinv;+1 = inv; %150 = 75
units, regardless of inventory increases or decreases due to
the rest of trading operations.

4.3 Market Maker’s training algorithm

To clarify the training process, Algorithm 1 presents the
pseudo-code. This is an adaptation of the original DQN algo-
rithm [34] to the market maker learning problem. According
to the training flow, the market maker waits until new market
information arrives (5, 6). With this information, the state
space is updated and an action is selected. As DQN follows
an epsilon-greedy strategy, the action is selected according
to an epsilon value (7,9). Every action consists of selecting
3 different values as shown in previous Section 4.2.2: A buy
price, a sell price, and a hedging percentage. Buy and sell
prices are streamed back into the market (12), and at the
same time, the inventory is hedged according to the percent-
age selected in the action(13). Investors, once having all the
different prices, launch buy and sell orders against all the
available MMs (14). At that moment the market maker com-
putes its rewards, according to the reward function described
in Section 4.1 (15). All the transitions are stored in a replay-
buffer(17), transitions that will be used every 200 time steps
to train the MM neural network(19).
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Algorithm 1 DQN MM training flow

1: Initialize memory D <« @, ¢t <— 0

2: for simulation do

3:  Init simulation

4 for every time step #; in the simulation do

5: get current market spread Sp; from market data.
6: initialize state, s;
7
8

if rand < € then
: a;=best_action(buy, sell and hedge n)
9: else

10: aj=random_action(buy, sell and hedge n)

11: end if

12: execute action ¢; (stream buy and sell spreads)

13: execute hedging from the previous time step Hg;

14: Investors launch random buy/sell operations on the cheapest
MM

15: MM computes rewards r; and observes ;1.

16: MM applies € decay

17: store transition (s;, a;, S;j+1, ;) in buffer D

18: te<=t+1

19: if 1%200 == 0 then

20: retrain Training NN with 1.024 random transitions from
D

21: Target NN <« Training NN

22: end if

23: Si <= Sit1

24:  end for

25: end for

5 Experimental setting and methods

Due to continuous state space, and the non-episodic nature
of our approach, we have opted for using a Deep Q-Network
for the MM agent. As introduced in previous sections, the Q-
function Q(s,a) is approximated by a DQN, by using a fully
connected network. In fact two, instead of one, identical neu-
ral networks are used: a training NN and a target NN. This
improves the stabilization in the learning stage [34]. These
neural networks have been defined with a total of 8 state space
variables in the input layer, and 605 possible actions in the
output layer. Furthermore, the network has 3 hidden layers
with 32 neurons each one. The input and the three hidden lay-
ers have ReLu as the activation function. The output layer,
however, uses a linear activation function. For every given
state the neural network approximates the reward of every
action, selecting the action with the best-expected reward.
Epsilon-greedy is the exploration strategy. Other network
architectures have also been tested, such as 3 x 32, 3 x 64
and 5 x 64 (layers x neurons).

Regarding the training stage, the neural network is fitted
every 200 time steps (1 epoch). Experience replay is used to
improve the training. According to this, all the experiences
tuples e; = (s;, a;, ri, si+1) are stored in a replay-buffer of
1M size. Every epoch, the training neural network takes mini-
batches of 1.024 random experiences from this replay-buffer
fitting the weights using back-propagation. Adam has been
chosen as the learning optimizer and MAE as the loss metric.

@ Springer

The learning rate is set to Ir = 0.01. The discount factor
has been set to y = 0.6. These hyperparameters have been
selected after testing other alternative values.

Regarding the trading environment, there are three types
of experimental MMs competing with each other in every
simulation, as follows:

e 1 DQN market maker (DQN MM): The Deep Q-
Learning (DQN) intelligent market maker proposed in
this paper.

e 1 Random market maker (Random MM), a market
maker with uniform random spreads and hedges on every
time step. Same action space as DQN.

e 1 Persistent market maker (Persistent MM), a market
maker with fixed uniform random spread and hedges over
every simulation. The spreads and hedge are selected at
the beginning of each simulation and kept until the sim-
ulation is finished. Same action space as DQN.

All the experiments have been conducted in a simulated
event-based trading environment called ABIDES [41]. This
kind of simulated environment allows us to run multiple
setups, increasing the variance of the data and reducing over-
fitting, among other benefits. ABIDES, in its more recent
versions, is being integrated as an OpenAl gym environment
[42]. In anutshell, ABIDES is an agent-based simulation tool
where the defined agents interact with each other in a trading
session, as a real market does. Every agent included in the
market has its own strategy (non-informed traders, market
makers, momentum agents, etc), and the natural interaction
among them is what defines the price movement of the nego-
tiated assets. This tool is being used in many trading studies
[43-45] as it is able to simulate very realistic trading Mar-
kets. It allows the generation of diverse market configurations
according to the needs of the specific study. In our work,
we have tried to generate a “standard” market in terms of
price volatility. With our setup, we were essentially looking
for credible price movements, while keeping the stochastic
essence of every trading environment. According to this, the
market simulation configuration in which the experiments
were conducted had the following participants/setup:

e 100 noise agents: These agents place orders in the OB in
a random direction of fixed size.

e 10 value agents. They have access to fundamental time
series and operate according to variations of mid-price
related to their mid-price forecast.

e 10 Momentum agents. This kind of agent operates when
50 and 20 steps moving averages are crossed.

e | adaptive POV agent. This agent provides certain lig-
uidity to the synthetic market by placing orders at fixed
intervals.
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Fig.2 Mid-prices evolution sample. This figure illustrates how the price
changes along a random sample of different simulations., showing the
stochastic nature of ABIDES simulator

e | exchange agent. Finally, this agent orchestrates the
interaction and integration of all the agents and the order
book.

The market generated from the interaction of these agents
has enough liquidity to allow for different spreads along the
simulations. Additionally, the returns are reasonable and the
price movements are suitable for a standard financial market.
To illustrate these points, Figs. 2 and 3 show different price
trajectories and returns respectively across full experiments.

All these agents interact for two hours, determining a
trading session. This interaction defines the movement of
the stock price, its volatility, and also the reference market
spread Sp. In addition to these agents, 50 investor agents
interact solely with the market makers. These investor agents
place random buy or sell orders with a fixed size. As greedy
investors, they always choose the MM with the narrowest
spread available in the OB, hence the cheapest one. If there

250 Mean return = -0.01%
Std return = 1.32%
200 Min return = -9.19%
5 Max return = 11.46%
GC) 150
=]
5
= 100
50
0 skt
-10 =5 0 5 10
% Return

Fig. 3 Histogram of returns. The plot shows the returns (price
variations) distribution at the end of all simulations. Ret;, =
(Prices/Pricey) — 1

were many MM with the same cheapest Bl.S P or Sl.s P the
investor would pick one of them randomly.

As mentioned above, every training/testing simulation is
based on a 2-hour market session (9:30h to 11:30h). One
DQN MM agent, one Random MM, and one Persistent MM
are included. Full experiments have a total of 150 indepen-
dent simulations (trading sessions), with 5 total experiments
per setup.

No trading costs have been considered. Asset prices evolve
stochastically according to agents’ natural interaction. All
simulations begin with an opening price of $1.000,00.

The experiment results are evaluated in terms of the total
MtM and cash/inventory value ratios at the end of the trading
sessions.

6 Experimental evaluation

In this section, we describe all the experiments, from the
agent training to the comparison with other existing reward
functions. First, to evaluate the impact of different penalty
factors, we train our DQN MM with 9 different setups
(Section 6.1). This phase gives us a first idea of the learn-
ing and performance of the different MM setups. Once we
have these DQN MM trained, we test them in new fresh
environments (Section 6.2). Then, we analyze the test results
in terms of profitability (MtM), inventory management, and
cash/inventory value ratio as main metrics. Furthermore, we
inspect the policies performed by the DQN in all the testing
environments (Section 6.3). Finally, to compare our solu-
tion against other existing approaches, we set up additional
experiments in which we evaluate these reward functions
(Section 6.4), demonstrating how our proposed solution is
able to generate better market maker policies.

6.1 Training the market maker

Our DQN MM competes against two additional MMs in the
trading sessions: one random agent, and one persistent agent.
To evaluate the DQN MM performance in terms of prof-
itability and inventory risk management, multiple training
setups have been launched applying different Alpha Inven-
tory Impact Factors (AIIF). A total of 10 different AIIFs
have been tested. Starting from AIIF = 0, where no
inventory penalty is applied to the reward function, up to
AIIF = 100 where inventory impact is severe. Therefore,
AIlF =1{0,0.2,0.5,0.8,1, 1.5,2, 5, 10, 100}. In addition,
the Dynamic Inventory Threshold Factor DITF, has been
established in this experimentation with a fixed value of
DITF = 0.5. We have chosen this value because we find it
feasible to keep inventory value below 25% of total MtM at
any time. All the MM starts with cash of 100.000,00 $ and
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Fig.4 Single training experiment, applying an AIIF = 0 in the reward
function. The three competing agents are shown. It is noted how the
DQN MM agent is able to learn along simulations how to be profitable
(MtM), compared to the other two random agents

0 units of asset inventory. A total of &~ 612K gradient steps
have been performed per single experiment.

First training results (with A/ F = 0) show very good
performance in terms of Mark-To-Market, finding a more
profitable policy than random and persistent MMs (Fig. 4).
These two non-intelligent MM, in fact, end with lower MtM
even than at starting point. Regarding alpha coefficients
(AIIF), if we take a closer look at Fig. 5 where the differ-
ent values of AIIF are represented, it is remarkable to see
how the slopes of the mark-to-market curves moderate as
long as the AIIF factor increases.

6.2 Testing the policies

Once the agents have been trained using different AIIF fac-
tors, they are all tested on new experiments. At first sight, we
notice they perform well in terms of profitability with almost

1e7
125 a=b
— a=02
120 — 9=08
—_a=1
@ — a=15
£ 115 ——-a=2
g — a=5
o — a=10
; 1.10 a=100
g
1.05
1.00 -

60 80 100 120 140
Num. of Simulation

Fig.5 DQN MM training results applying different A7/ F. It is notice-
able how MtM return reduces as long as Al [ F' factor is increased. This
effect has to do with the control of inventory. (Random and Persistent
agents are not shown)
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Fig. 6 DQN MM testing rounds, with different AIIF factors. Higher
profits (MtM) are linked to lower A7 F factors, as inventory control is
more relaxed

all small AIIFs (Fig. 6). As long as alpha is increased, prof-
itability is impacted. However, the inventory is controlled as
well, as expected (Fig. 7).

If we analyze inventory distributions (Fig. 8), itis clear that
as soon as the AIIF penalty factor increases the inventory also
shrinks. Therefore, the distributions get narrower according
to this coefficient as expected.

But not only AIIF factor plays a key role in managing the
inventory risk. This management is also related to Dynamic
Inventory Threshold Factor (DITF). This factor, which is
established in this research to a value of 0.5, defines the pro-
portion between cash and inventory value to be along the
experiments. In Figs. 9, 10, and 11 we can notice how this
threshold (in red) adapts dynamically along them according
to the different AIIF factors, based only on the cash held by
the MM at every moment, and the inventory value. Here we
can see three examples, A/ F = 0 (no penalty), AIIF = 1
and AIIF = 5. As long as AIIF factor is increased, inven-
tories are kept more strictly inside the thresholds. Note that

300
200

100

Inventory
o

]
-
o
o

-200

-300

-400

60 80 100 120 140
Num. of Simulation

Fig.7 DQN MM testing’s rounds inventories, applying different A/ I F
factors. In general terms, as long as the AIIF factors are increased,
inventories are reduced as well, due to the controlling effect that this
factor has on them
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Fig. 8 DQN MM inventory distributions along different experiments. remarkable how, as long as the AIIF factors are increased, the inven-
This Figure illustrates the different inventories held by every agent tory distribution and dispersion are reduced due to the inventory control
along the testing stage, according to their different AIIF factors. It is nature of the factor
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Fig.9 DQN MM instant inventories held and thresholds along the test- in inventories are noted. The inventory control is improved with higher
ing experiment at every time step. Due to the lowest restrictive alpha alphas, as shown in the following Figs. 10 and 11
factor applied (A1 1 F = 0), noisy inventory thresholds and big variance
2000 e Inventory (a=1) Cash/Inventory Dynamic Threshold

> 1000
L
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Fig. 10 DQN MM inventories and thresholds along the experiment with AIIF = 1. More stable thresholds are shown compared to the lower AIIFs
of the previous Figure. In addition, the inventories are also more constrained

400 ° Inventory (a = 5) Cash/Inventory Dynamic Threshold

Inventory

0 20000 40000 60000 80000 100000
Time step

Fig. 11 DQN MM inventories and thresholds along the experiment with AIIF = 5. Here, extremely stable and low thresholds with very constrained
inventories inside these thresholds (note different range values than Figs. 9 and 10). For the sake of legibility, y-axis ranges in Figs. 9, 10 and 11
have been adjusted
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Table 1 DQN Cash/Inventory Average Ratio and Benchmarks

DQN MM

Experiment ~ Avg? o Avg

Random MM

a b

o Avg

Persistent MM

a O,D

AIlF =0 1,08 0,12 1,31 0,31 1,44 1,18
AIIF =0,2 1,18 0,06 1 0,3 1,24 0,96
AIIF =0,5 1,01 0,15 1,34 0,23 1,59 0,95
AIIF =0,8 1,32 0,38 1,33 0,29 2,22 2,36
AIIF =1 1,48 0,65 1,22 0,31 1,29 0,71
AIIF =1,5 1,39 0,21 1,05 0,34 1,31 1,32
AIIF =2 3,06 16,55 1,2 0,28 1,3 0,69

AIIF =5 11,62 90,3 1,23 0,29 1,28 0,43
AIIF =10 7,96 24,42 1,27 0,29 1,18 0,45
AIIF =100 59,34 413,12 1,21 0,28 1,22 0,44

Note: Table with the average ratio between the cash of the MM and the
value of the inventory held at every experiment. It is noticeable that as
long as the AIIF factor is increased, so does the cash over the inventory
value. Every experiment corresponds to different Alpha factors (AIIF)
4 Average Cash/Inventory ratio per experiment

bCash/Inventory ratio standard deviation per experiment

y-axis ranges of Figs. 9, 10 and 11 have been adjusted inde-
pendently for the sake of legibility.

Finally, we have explained that the dynamic threshold is
calculated with the value of the inventory at every time. In this
sense, we can talk about Cash / Inventory value ratios, as it is
the main driver of the penalty term. Concerning this point, we
can take a look at Table 1, where average ratios are presented
per experiment. Again, we can observe how increasing AIIF
factor impacts directly this ratio, by improving this value.
This is very reasonable, as the agent is constantly manag-
ing the trade-off between profitability and inventory value.
Thereby, the higher the AIIF factor, the higher Cash / Inven-
tory value ratio returned.

6.3 Qualitative analysis of the generated policies

As formerly detailed, DQN agent behavior relies on a neural
network that returns the best action for each state. On many
occasions, neural networks are considered “black boxes”, as
they suffer from a certain lack of interpretability. In order
to have a better understanding of the experimental results,
and the policies followed by the different MMs, we analyze
the different buy, sell, and hedging spreads performed in the
different experiments.

Regarding buy and sell strategies, as shown in Fig. 12,
it is noticeable how both 7 ;) move from negative to posi-
tive values as long as the AIIF rises. This suggests that with
smaller or negative 7, ) the MM is more aggressive in terms
of prices (narrower spread), being able to capture a higher
number of trades. Furthermore, it is also remarkable how
strategies evolve not only in terms of negative or positive val-
ues, but increasing the distance between buy and sell 1, )
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Fig.12 DQN MM buy and sell strategy distributions, in terms of prices,
according to different AIIF. The higher ns, the more expensive price
streamed by the MM. ;=0 represents the same price as the last mar-
ket spread. Different strategies are performed depending on the AIIF
factors. With high AIIF factors, higher spreads are streamed by the MM

(as it happens around AII/F = 0.5and AII F = 1.5). Thus,
different approaches and behaviors are found by the MM.

Regarding the hedging strategies (Fig. 13), we notice that
as long as the inventory penalty increases so does hedging ny,.
This increase makes MM keep low inventory despite losing
profitability due to hedging costs. Thereby, buy/sell n,y)
adaptive strategies combined with different hedging actions
n;, composes the unique learned policies.

If we look at the average status of the MMs (Figs. 14 and
15), it is remarkable how higher AIIFs can even finish with
less value in terms of MtM than starting value. Focusing
on AIIF = 5, although the inventory position ends in a
very constrained situation, we can see how the experiment
finishes below the starting Mark-to-Market reference line.

0.8 ‘ ’

&
_ | A

0.4
v ) b~
\ 4

0 02 05 08 1 15 2 5 10 100
Alpha (AAIF)

Fig. 13 DQN MM hedge strategy distributions according to differ-
ent AIIF. 7, represents the amount of inventory the MM is reducing
instantly by buying or selling at market price in a specific time step.
This “urgency” has an extra cost. It is remarkable how higher hedges
ny are performed as long as the alfa factor is increased
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Fig. 14 DOQN single inventory and MtM per AIIF results are obtained
from every test experiment. Each point represents the average MtM and
Inventory of the MM of every testing simulation (150 simulations x 10
alphas). As noticed, the dispersion is higher with lower AIIF factors

So, according to this, it is very important to be aware of the
impact of increasing AIIF factor on the overall performance.
All the details regarding the MtM can be found in Table 2.
Finally, aiming to fully understand the policies behind
actions, we find it relevant to analyze how AIIF factor impacts
the number of stocks traded by the DQN MM. Taking into
account that higher AIIFs usually rely on higher buy and sell
N(b,s) as stated before, we may expect that the number of oper-
ations performed by the MM could decrease as long as AIIF
factor increases. In Fig. 16 we can appreciate that this intu-
ition is accurate and especially relevant with higher AIIFs.
In summary, and with all these insights raised we can say
that, as long as the AIIFs increases, the MM becomes more
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Fig. 15 DQN inventory and MtM in average per AIIF are obtained
from every test experiment (grouped by alpha). Here we can notice
the inverse correlation between MtM+Inventory and AIIF factors. In
addition, it is clearly shown the competing nature of both goals: to
reduce the inventory while increasing the MtM

selective with actions performed, preferring higher spreads
and increasing the use of hedging.

6.4 Comparison with existing reward functions

To test the robustness of our approach it is important to per-
form a benchmark with other reward functions. Accordingly,
we have selected different and recent works [22, 25, 27],
already introduced in Section 2. These three different works
represent common MM RL approaches, as they focus on dif-
ferent metrics to define the reward of their agents. In order
to do a “fair” comparison among methods, we have used
only their respective reward functions, while preserving the
rest of the parameters in the most similar possible. There-
fore, every agent shares the same state and action space, the
same DQN architecture, and the same hedging policy, as
presented before in Section 5. The rest of the experimental
settings (environment agents, episode lengths, random com-
peting agents, etc) have been preserved as well.

Hence, a total of 4 different reward functions have been
compared:

e Full inventory penalty: Inspired in [27]°, this reward
function includes a penalty term related to the absolute
amount of inventory held by the MM at every time step,
multiplied by arisk aversion coefficient, as shown in (12):

Ri = Ol' — Ak |inv,-| - HCi (12)

A has been set to A = 0.15, following the experimental
setup of the mentioned work.

e Asymmetrically dampened PnL: Based on [25], this
reward function includes a penalty term that penalizes
the incomes coming from Inventory value increases. It is
modulated by a scale factor n, as shown in (13):

R; = O; + Pnl; —max(0,n * Pnl;) — Hc; (13)

n has been initially set to n = 0.1 as shown in the respec-
tive work.

e PnL: No inventory penalty term is included. This is a
common approach in many works (i.e. [22]) as introduced
in Section 2. Here, only the profits derived from trades
are considered, apart from hedging costs, as shown in
(14):

R; = O; — Hc; (14)
® Rip1 = (QFF - Mip1)10% exe + (M1 - QP 1{QV 4 exe)
=AM 41]

T ri = (@) - max(0, n % Inv(t;) Am(t;))
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Table 2 DQN Mark-to-Market

. 3 DQN MM Random MM Persistent MM
experiment results (x107) and Experiment Avg? a® Var® Avg? o®  Var® Avg? o®  Var®
baseline agents

AIIF =0 12.399 48 24,50% 9.711 10 -2,98% 9.648 13 -3,35%
AIIF =022 12.833 66 28,05% 9.559 7 -4,30% 9.575 14 -4,45%
AIIF =05 11.688 122 15,27% 9.957 39 -0,33% 9.889 17 -0,71%
AIIF =0.8 10.358 23 3,69% 9.823 9 -1,96% 9.884 14 -1,26%
AIIF =1 10176 7 1,72% 9.889 9 -0,94% 9.900 9 -0,88%
AIIF =15 10.501 24 5,60% 9.775 12 -2,71% 9.811 13 -1,76%
AIIF =2 10.081 12 0,85% 9.944 13 -0,47% 9.922 13 -0,81%
AIIF =5 9.984 3 -0,18% 10.064 16 0,69% 10.038 13 0,37%
AIIF =10 10.061 6 0,57% 9.969 7 -0,36% 9.998 9 0,15%
AIIF =100 10.008 1 0,11% 10.019 15 0,04% 10.048 11 0,41%

Note: Table with all the MtM values along different testing experiments. Every experiment corresponds to
different Alpha factors (AIIF). Starting MtM = 10.000 (x10%)

2 Average MtM along the experiment

YMtM standard deviation along the experiment
“MM increase/decrease at end of the experiment (return)

e RIM (Our reward function, (2)): For the sake of com-
parison, different AIIFs have been included: AIIF €
{0.2,0.5,0.8, 1}.

Seven different DQN agents were trained independently,
based on the described reward functions. Examining the
results in Fig. 17 and Table 3, we see that our reward func-
tion with AIIF = 0.2 was the most profitable during the
150 tested trading sessions, followed by the Asymmetrically
dampened reward function and our reward function with
AIIF = 0.5. These two last cases obtain almost the same
profitability. With higher AIIF values (@ = 0.8 and @ = 1)
MtM decreases, as stated earlier, due to inventory control.
All these mentioned agents had stable returns during the test
experiments, as shown in Fig. 17. However, the agent with
the PnL reward function performed much worse in both MtM
and inventory management, indicating that inventory metrics
should be included in the reward function to design better
market-making agents.

Regarding inventory management, and taking a look at
Fig 18, we notice how our reward function performed well
in all cases. Full inventory penalty reward function also per-
formed well, despite lower returns. However, Asymmetrically
dampened PnL and PnL reward functions perform poorly in
managing inventory, as shown in the distribution dispersion.

As an overall conclusion of this benchmark, we can con-
clude that our reward function allows the market maker to
perform better in terms of MtM, and also, in terms of inven-
tory management than the rest of the tested functions. The
average ratio figures between the cash and the inventory value
presented in Table 3 also illustrate how our market makers
can manage properly these proportions. Furthermore, from
the obtained results we can affirm that including some kind
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of penalty term in the reward function helps to improve the
profitability of the agent while constraining the inventory
risks. In fact, those reward functions that are based only on
PnL, ignoring inventory, can lead to the design of ineffective
and also unstable agents.

6.5 Discussion

Achieving different goals in a multi-objective environment is
not always easy. Market-making can be considered a multi-
objective task. The presented results (Table 3) demonstrate
that our proposed agent and reward function can deal with
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Fig. 16 Buy and sell amount of stock traded according to different
AIIF. As long as the AIIF factor is increased, the number of executed
operations is reduced. This has to do with the increase of buy and sell
1n(b,s) Shownin Fig. 12, a point that makes the MM to be less competitive
in terms of price, and therefore, captures less orders from the investors



Automated market maker inventory management

22263

1e7
—— Asym Damp — PnL — a=05
—— Full Inv — a=02 —— a=038
1.125 7

— a=1

1.150

1.100

1.075

1.050

Mark to Market

1.025

1.000

0.975

60 80
Num. of Simulation

100 120 140

Fig. 17 Benchmark results in terms of MtM (cash + inventory value).
Training stage (left) and testing stage (right). Four different reward func-
tions are compared: Full Inv 12, Asym Damp 13, PnL 14, and our reward
function RIM 2 (alpha). Different AIIF factors () have been included
for our reward function. It is noticeable that, as long as the alpha fac-
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tors are increased, the MtM is reduced as well due to the more strict
control on the inventory. In addition, PnL reward function, which
focuses on improving only the returns, shows a very unstable behavior
with high variance

Table 3 Benchmark results.

. Mark-To-Market Inventory Cash/Inv.Value ratio
MtM, inventory, and . a b ¢ a b a b
. . Experiment Avg o Var Avg o Avg o

cash/inventory ratio are

presented AsymDamp 11.672 162 17,27% 2.975 288 1,08 0,25
Fulllnv 10.107 27 1, 02% -32 14 1,15 0,19
PnL 8.338 1.048 —0,53% 16.569 1.882 1,03 0,14
AIIF =0.2 12.833 66 28, 05% —183 35 1,18 0, 06
AIIF =0.5 11.688 122 15,27% 199 31 1,01 0,15
AIIF =0.8 10.358 23 3, 69% —40 9 1,32 0,38
AIIF =1 10.176 7 1,72% -8 4 1,47 0, 64

Note: Table with the results of the different reward functions tested, in terms of Mark-To-Market, inventory,

and cash/inventory value ratio

4 Average value along the experiment
bStandard deviation along the experiment
“MIM increase/decrease at end of the experiment (return)

Asym Damp
Full Inv

PnL

Reward function

o+.§..I.-i-

-20000

Fig. 18 Benchmark results in terms of Inventory distribution. This Fig-
ure illustrates the different inventories held by every agent during the
testing stage, according to their different reward functions. Four differ-
ent reward functions are compared: Full Inv 12, Asym Damp 13, PnL 14
and our reward function RIM 2 (alphas). Regarding our reward function,

|

20000 40000 60000

Inventory distribution

4 different AIIF factors («) have been included: o € {0.2, 0.5, 0.8, 1}.
It is clear how PnL reward function tends to accumulate more inven-
tory (positive or negative) compared to the rest of the alternatives. In
addition, our proposed reward function behaves very well with all the
different alpha factors
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this, adapting properly to the changing environment while
seeking the two main objectives:

e To be profitable, as shown in the results. In this sense, the
MtM average results show that our agent obtains good
returns and performs better than most of the previous
ones, except for AsymDamp.

e To keep inventory controlled, as evidenced by compar-
ing the average inventory returns with those of PnL and
AsymDamp alternatives.

As a limitation of this method, we can remark that we
must have one pre-trained agent per configuration needed
before going live. Defining a scalarized reward function, as
done in this work, requires prior knowledge of the future
utility function. If the utility function changes “a posteriori”
we need to have pre-trained agents that can adapt to it.

Conversely, RL enables us to define agents simply by spec-
ifying the reward function. This means it always seeks the
best policy, regardless of system complexity. This is a note-
worthy advantage in stochastic and dynamic environments
such as stock markets, where rule-based agents would require
continuous calibrations and adaptations.

7 Conclusion and future work

In this paper, we have presented a robust approach for learn-
ing a market-making agent based on RL, where the agent can
modulate automatically its inventory according to a desired
liquidity ratio. We have introduced a reward function that,
when combined with the DQN algorithm, can modulate the
inventory while seeking profitability and adapting to the
evolving liquidity of the agent. This reward function has two
key factors that allow the agent to control the inventory risk
dynamically while looking for profitability. First, the AIIF
factor modulates the risk aversion related to inventory risk
by serving as a penalty term. Additionally, DITF factor can
dynamically adjust the behavior of the agent as it adapts to
the cash/inventory value held at every time. These two terms
combined enable the MM to control its risks dynamically
while adhering to the initial risk aversion strategy. There-
fore, the MM will not follow a static policy driven by a
standard scalarised multi-objective reward function. Rather,
it will adapt to the market based on its holdings of cash and
inventory.

The MM agent has been tested with different penalty fac-
tors to evaluate the performance of these parameters in a
simulated but realistic environment, and has also been com-
pared to random baseline agents. Experimental results show
that the presented approach allows for the design of an RL
MM that, with only two liquidity parameters, efficiently mod-
ulates its operations.

@ Springer

Additionally, we have not only designed this intelligent
agent, but we have also been able to understand and evaluate
the underlying strategies followed by our MM in terms of
price and hedge spreads (actions). We have analyzed this
taking into account different penalty coefficients, getting
valuable insights about the trading operative in terms of pric-
ing, inventory hedging, and inventory dynamic thresholds.
This analysis allows us to delve into the reasoning behind
the learned strategies, without leaving the agent to operate as
a “black box”.

Last but not least, we have compared our proposed solu-
tion with other existing reward functions, concluding that our
function can achieve good returns while managing inven-
tory risk in a more robust way than the alternative tested
approaches.

Concerning future work, there are some aspects that can
also be explored and even improved. The main thing we find
relevant is related to the selection of a proper AIIF factor.
With our current proposal, this coefficient is predetermined
and does not consider the changing market conditions over
time. It is well known that market volatility evolves over
time, even for the same asset, behaving differently depend-
ing on the hour of the day, the arrival of new economic data,
or some other events. Including a volatility parameter that
modulates this AIIF coefficient according to the market “tex-
ture” at every time could be a good upgrade of the reward
function.
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