
Train Route Planning as a Multi-agent

Path Finding Problem

Mauricio Salerno(B), Yolanda E-Mart́ın, Raquel Fuentetaja, Alba Gragera,
Alberto Pozanco, and Daniel Borrajo

Universidad Carlos III de Madrid, Madrid, Spain
{msalerno,agragera,apozanco}@pa.uc3m.es, {yescuder,rfuentet}@inf.uc3m.es,

dborrajo@ia.uc3m.es

Abstract. The train routing and timetabling problem consists of set-
ting routes and schedules of a set of vehicles given their initial timetables
and a railway network. The number of vehicles, the complexity and lim-
ited capacity of the railway network, and the time constraints make this
problem dicult to solve. In this paper, we model this problem as a
Multi-Agent Pathnding problem, and propose a Conict-Based Search
approach to solve it. In our approach, we consider the complex properties
found in this scenario such as continuous time, agents that function as
convoys of arbitrary length, arbitrary action duration, and railway net-
works to nd a solution. We analyze and discuss our approach explaining
the main diculties and evaluate it on several scenarios.

Keywords: Train routing and timetabling · Multi-agent path nding ·
Heuristic search

1 Introduction

The Train Routing Problem (trp) consists of routing a set of vehicles in railway
network and assigning them tracks to arrive (depart) to (from) the station. The
Train Timetabling Problem (ttp) consists of scheduling a set of vehicles without
violating track capacities and satisfying some time constraints. Both problems
can be studied separately, but they are directly related: scheduling a train not
only depends on the railway network and departure and arrival times, but also on
the route and all possible conicts with other trains’ routes. The combination of
both problems is dicult to solve because of the number of trains, the complexity
and limited capacity of the railway network, and the time constraints.

Both problems have been widely studied using dierent techniques such as
Integer Linear Programming (ilp) [3], Mixed Integer Programming (mip) [11,13],
multi-objective linear programming [12], local search [4,7], heuristic search [6],
or Constraint Satisfaction Problems (csp) [14]. In this work, we study the Train
Routing and Timetabling problems together as Multi-Agent Pathnding (mapf)
problems [5]. A mapf problem is the problem of nding paths for a set of agents
such that every agent reaches its goal while avoiding collisions.
c Springer Nature Switzerland AG 2021
E. Alba et al. (Eds.): CAEPIA 2021, LNAI 12882, pp. 237–246, 2021.
https://doi.org/10.1007/978-3-030-85713-4_23



238 M. Salerno et al.

trp has been already studied by previous works using a mapf approach [2].
However, they relax the problem by making assumptions that hinder the use
of such techniques in more realistic scenarios as: discrete time steps, unit-cost
actions, vehicles losing dimensionality while stopped, and grid scenarios. Andr-
eychuk et al. [1] study the mapf problem under a more realistic setting, where
agents have volume, there are arbitrary cost actions, and continuous time. The
type of agents considered are 2D non rotating agents situated also in grids.

Our work is inspired by Atzmon et al. [2] and Andreychuk et al. [1], but we
go one step forward by considering: (1) vehicles that keep their size throughout
the whole process; (2) use the concept of resources to determine conicts, which
allows dealing with collision detection; and (3) more realistic railway networks.

The rest of the paper is organized as follows. First, we introduce a formal
denition of the Train Routing and Timetabling Problem (trtp) we address.
Then, we dene the algorithms we use to solve the problem. Finally, we present
an empirical study in dierent scenarios, and the conclusions and future work.

2 Problem Definition

We dene the Train Routing and Timetabling Problem (trtp), as a tuple
(I, R,V , T ) where I represents the railway topology, dened by a set of seg-
ments S and a set of points P ; R is a set of resources; V is a set of vehicles; and
T is the initial route timetable for all vehicles. Every segment s ∈ S has a start-
ing point and an end point (ss, se), where ss, se ∈ P and it is associated to one
of two directions ds ∈ {1, 2}, a length ls, and a travel time ts. Bidirectional seg-
ments are considered as dierent segments with opposite directions. Resources
are the basis of the railway safety system. They are exclusive since they can
only be occupied by a single vehicle at a time. Thus, each resource is dened
by a set of segments R ⊆ S, such that ∀i, j i = j → Ri ∩ Rj = ∅. Each vehicle
v ∈ V has a length lv. We assume all vehicles can travel in both directions and
have constant speed c. A route timetable for a vehicle v is a sequence of tuples
p, d, [ta, td], o, where p is the position of the vehicle’s head, d is the direction,
[ta, td] is the time interval dening the arrival and departure times of the vehicle
head to/from p, and o is the sequence of segments (from head to tail) that the
vehicle occupies. p can be dened by either a point, an area, or a platform area.

An area is a subset of segments A ⊆ S. A platform area is a subset of platform
segments in an area, T ⊆ A. Platforms are the only segments where passengers
can board and alight.

The initial route timetable corresponds to the ocial train timetable, which
is a partial denition of the vehicles’ route. It must specify boarding/alighting
times in platform areas, which will be considered as hard constraints. Thus,
for each vehicle it could specify: (a) either an entry or internal point of the
infrastructure along with the arrival time to it; (b) one or more areas where
the vehicle has to stop, or platform areas where the vehicle has to board/alight
passengers, along with the corresponding times; and (c) an exit point from the
infrastructure to the external railway network.



Train Route Planning as a Multi-agent Path Finding Problem 239

A solution to a trtp is a route timetable that completely denes all vehicles’
paths along with the arrival and departure point times, such that there are no
conicts among vehicles and all arrivals and departures are performed on-time.

The following denitions refer to concepts which are relevant for nding a
solution to the trtp.

Definition 1 (Stop time). Given the arrival/departure interval [tpa, tpd] for a
specific point p in the route of a vehicle v, the stop time of v at p is defined as
tpstop = tpd − tpa. If tstop = 0, p is a non-stopping point.

Vehicles have an arbitrary length, which could be larger than the length of the
segment where their head is situated. This implies that a vehicle might occupy
several segments at the same time. Thus, the solver needs to keep track of the
segments’ occupation as the route is being computed. Also, the solution must
ensure that the route is safe, meaning that there are no collisions with other
vehicles. In order to achieve that, the route must comply with resource exclu-
sivity, which implies keeping track of the blocked resources and their releasing
times.

Definition 2 (Occupied segments). Let (p0, . . . , pi) be the points in the cur-
rent route of a vehicle v, which determines a sequence of segments (s0, . . . , si−1),
where each segment connects two consecutive route points. Let us assume that
v’s head is situated at point pi, which means that the vehicle is in segment si−1.
Let si−k be the first segment from head to tail for which

∑k
j=1 lsi−j

> lv. Then,
v occupies, from head to tail, the sequence of segments o = (si−1, . . . , si−k).

This denition is illustrated in Fig. 1 (left), where there is a vehicle whose
head is at pi, and the complete vehicle occupies the segments from si−1 to si−k.

Fig. 1. Occupation and direction change scheme.

To ensure a solution that respects the railway safety system, we need to dene
the concept of segment occupation time, i.e., the time interval when a vehicle is
occupying a segment. This interval starts when the vehicle’s head arrives to the
starting point of the segment and ends when the vehicle’s tail leaves its end point.
The upper bound of this interval is computed considering the head’s departure
time from the end point plus the time from head to tail. Formally:

Definition 3 (Segment occupation time). Let (p0, . . . , pi) be the points
in the current route of a vehicle v, and o = (si−1, . . . , si−k) be the sequence
of occupied segments. Then, the segment occupation time of si−k is defined by
the time interval [tpi−k

a , t
pi−k+1
d + tvhead-tail + todelay], where tvhead-tail = lv/c and

todelay = tpi

stop + t
pi−1
stop + · · · + t

pi−k+2
stop .



240 M. Salerno et al.

In this denition, the time from head to tail, tvhead-tail, is computed considering
the length of the vehicle and the constant speed c. The delay in leaving segment
si−k is due to the (potential) stops of the vehicle’s head in the points from pi−k+2

to pi. As Fig. 1 (left) shows, these are the successive points where the vehicle
can stop while its tail is still in segment si−k.

Resources are sets of exclusive segments. A resource is blocked when a vehicle
enters in any of its segments [10]. When a resource is blocked, no other vehicles
can use the resource until it is released. Note that a vehicle could block more
than one resource at the same time. A resource is released when the vehicle’s tail
passes another resource plus a constant security time. Given the sequence o of
occupied segments by a vehicle v, the list of blocked resources by v can be easily
computed considering the segments in o and the resources they belong to. Given
a resource R = {s0, . . . sn}, it would be blocked by a vehicle v within the interval
[tblock , trelease + tsafe ], where tblock is the arrival time of v’s head to a segment
in R; trelease is the time when v’s tail leaves the resource; and tsafe is an input
constant. The segment occupation times are computed following Denition 3.

In this work we assume vehicles can change their direction at a given moment.
To represent a direction change in the route schedule, we replace the vehicle’s
tail with its head and vice versa. We consider the time to move the new vehicle’s
head to the nearest point in the opposite direction (referred as setting time) plus
a maneuver time, tm. Let (pi, d, [tpi

a , tpi

d ], (si−1, . . . , si−k)) be the last tuple in the
route schedule for a vehicle before a direction change. Then, the next tuple in
its schedule, after the direction change, will be (pi−k, d̄, [tpi

d + tm + tset, t
pi−k

d ], o).
pi−k is the nearest point in the opposite direction, given that when the head
was at pi the vehicle was occupying the previous segments to si−k. The opposite
direction is denoted as d̄. The arrival time to this nearest point is the departure
time from pi, tpi

d , plus the setting and maneuver times. tpi

d refers now to the
tail departure since there was a direction change. The setting time is tset =
(
∑k

j=1 lsi−j
− lv)/c, where the numerator is the total length of the occupied

segments minus the vehicle’s length. This is the distance from the position of
the vehicle’s tail before the direction change to the point pi−k, the nearest one
in the opposite direction. The occupied segments o when the vehicle’s head is at
pi−k are computed following Denition 2.

Figure 1 illustrates a direction change. The left gure shows the initial posi-
tion of the vehicle before the direction change, where its head is located at point
pi (right direction). The right gure shows the nal position of the vehicle after
the direction change (left direction). The setting time is the time taken to move
the vehicle’s head from its actual position in segment si−k (left gure) to point
pi−k, which is the head position after the direction change (right gure).

3 Graph Representation of the Railway Network

In railway networks there are certain turns that vehicles cannot take due to
physical properties of the track topology. Figure 2 (left) shows a small railway
network where a train cannot turn from C to F if it reaches C from B (orange



Train Route Planning as a Multi-agent Path Finding Problem 241

train). However, the turn is possible if the train comes from D (grey train).
Considering these physical restrictions when the network is represented as a
graph would mean to deal with additional constraints to avoid impossible turns.

Fig. 2. Railway network with two vehicles (left) and corresponding dvg (right).

To overcome this issue, we represent the infrastructure as a Double Vertex
Graph (dvg) [10], which consists of vertices (points) and edges (segments) that
prevent impossible turns. We perform the search over this graph. The main idea
of a dvg is that all vertices are duplicated, generating pairs (v, v◦), where v and
v◦ are joined vertices that represent the same point in the network. This asso-
ciation relies on a mapping function ◦ : V → V that for each vertex v returns
its joined vertex ◦(v) (or v◦). This mapping function satises that ◦(◦(v)) = v.
During the search, reaching a vertex on the dvg implies to be moved automati-
cally to its joined one, by applying the mapping function ◦. Therefore, the only
allowed movements are those represented by the outgoing edges of the joined
vertex. Outgoing edges do not include movements with impossible turns.

The infrastructure I is converted automatically into a dvg: each point vi is
converted into a double vertex (vi, v

◦
i ); each segment with direction d, dened by

is starting and end points (vs, ve), generates the edge (v◦
s , ve); and each segment

with direction d̄, dened by points (vs, ve) generates the edge (vs, v
◦
e ). Figure 2

(right) shows the result of transforming the infrastructure in Fig. 2 (left) to a
dvg. Thus, the infrastructure contains the segments: AB, BC, CD, DE, GF, FC
(direction 1); BA, CB, DC, ED, FG, CF (direction 2).

A formal track topology, as dened by Montigel [10], includes both the dvg
and the denition of resources, which guarantee safety in the railway system.
Figure 2 (right) shows an example where resources represented with dashed lines.
Considering the dvg, vertices connected by an edge belong to the same resource.
Resource boundaries lie between joined vertices.

4 The trtp as a mapf Problem

In this section, we explain the approach followed to solve the trtp problem as
a mapf problem. Specically, we apply Conict-Based Search (cbs) [15], where
agents are trains and the search is performed over the formal track topology.

cbs consists of two search spaces: high-level and low-level. At the high level,
the search is performed on a binary conict tree (ct), which is created from



242 M. Salerno et al.

the found conicts. At the low level, the search seeks a path for a single agent
consistent with the imposed restrictions. The main idea behind this type of
search is to allow each agent to nd its own path at the low level while checking
that those paths are conict-free at the high level.

In this work, each node n ∈ ct is a state that consists of: (1) a set of
constraints (initially empty); (2) a potential solution to the trtp, Tn, consisting
of complete route timetable for each vehicle; and (3) the total cost of the solution.
To ensure the safety of the system, constraints are dened over resources; only
one vehicle can be located at the same time in the same resource.

Definition 4 (Conflict). A conflict appears when there is an overlap of the
time intervals of two agents occupying the same resource. A conflict over a
resource R ∈ R is defined as a tuple v1, v2, [t1, t2], [t3, t4], where v1, v2 ∈ V are
the vehicles involved in the conflict, and [t1, t2], [t3, t4] are the respective resource
occupation time intervals with [t1, t2] ∩ [t3, t4] = ∅.

During the high-level search, we select the next node n ∈ ct with least cost.
If n does not have any conict, n is a solution and we return the conict-free
route timetable for each agent on n. Otherwise, the search continues expanding
n. A conict in n is arbitrarily chosen and we constrain each agent’s search
according to the occupation time interval of the other agent involved in the
conict. We dene two constraints for each selected conict, represented as c1 =
(v1, R, [t3, t4]) and c2 = (v2, R, [t1, t2]). The former represents that the agent v1

must not be in R during the time interval [t3, t4], preventing it from occupying R
while v2 is inside (c2 is similar, but in the opposite direction). Then, we generate
two new successors n1 and n2 in the ct, with the same set of constraints as n,
plus the new one generated to each vehicle. Hence, n1 will restrict the solution
of v1 with c1 while n2 will do it to v2 with c2. A low-level search is performed
for each node to nd a new solution consistent with the new constraints.

The low-level search seeks a complete route timetable for a vehicle consis-
tent with its initial timetable T0, and its constraints. We conduct a modied
A∗, using as heuristic the minimum travel time without considering changes of
direction. A state is represented as p, d, ta, T , where p is the vehicle’s position,
d is the direction the vehicle is facing, ta is the arrival time to p, and T is the
vehicle’s timetable (partial route used to determine the vehicle’s current occu-
pation). Applicable actions are moving actions from one point to another. Stops
happen at the arrival vertex and the mapping function ◦ is applied on departure.
Direction changes can be applied at any moment (but have lower priority).

Sub-goals of a vehicle can be either points or areas. If a sub-goal g is a point,
the search can be easily guided using a heuristic function that estimates the cost
of reaching that point from the current point. However, when g is an area this
is not enough because each area has a set of n predened platform segments.
Any path that leads the vehicle to one of these segments within the specied
time interval could be a valid solution. Then, for that case, we rst perform a
platform selection step by generating as many search nodes as platforms are in
the area. All of these nodes have the same state, but dier in the goal point.



Train Route Planning as a Multi-agent Path Finding Problem 243

The search is performed as follows. For each node n, g(n) is the ta to the
current point, dened in its state. We keep two open lists during the search. The
rst one stores nodes n that do not require a direction change to reach the goal.
These are expanded according to their f(n) = g(n)+h(n) value. The second one
stores nodes that require at least a direction change. They are sorted according
to g(n), but only expanded when the rst list is empty. This guarantees that
direction changes are only performed when necessary. Applying a move action
from point p to point p implies: computing the departure time td from the
current point p; generating a successor whose partial route includes p along with
its time interval; and computing the arrival time, ta of the next current point
p. We do not consider stops unless this option violates a constraint. Thus, we
set td equal to ta whenever possible. The arrival time at p is computed as the
departure time from p plus the travel time tpp of the current traveling segment,
ta = td + tpp . If the node being expanded is a goal node, the departure time
is set to ∞: this indicates that the vehicle will remain parked in the current
segment(s). Then, the solution is returned. A stop is a td such that ta < td. We
only consider them when they are needed to avoid violating any constraint.

Definition 5 (Constraint Violation). Given a state s = p, d, ta, T  and a
successor state s = p, d, ta, T , generated by applying a move action from p
to p to the current vehicle v, a constraint c = (v, R, [ti, tj ]) for v is violated if
the segment (p, p) belongs to R and either: (a) ti < td < tj, or (b) td < ti and
ta > ti, or (c) ta < ti, the successor s of s involves a movement through a
segment which still belongs to R, and this movement generates a violation of c.

In (a), the violation can only be solved in two ways: (1) making td < ti, or
(2) making td > tj . Assuming that the vehicle does not stop at p (i.e. td = ta and
ta = ta+tpp), there is no chance to make td < ti since td is the earliest departure
time. Therefore, we choose to solve the constraint violation making td > tj by
setting td = tj + tsafe , where tsafe is the constant security time dened for the
network. Then, ta = td + tpp . It implies making a stop at p to delay entering the
resource until the upper bound of the forbidden interval is reached. In (b), the
solution is similar since an earlier departure from p would be needed to achieve
ta < ti. This is not possible because td is the earliest departure time (if the
vehicle does not stop at p). In (c), the constraint violation cannot be checked at
the expansion time of the current node (state s). At this point, it is a potential
violation since we do not know neither the departure time in s nor the arrival
time in s until s is expanded. In such scenario, we must create two child nodes
to guarantee completeness. One is the current successor (td = ta), which does
not violate the constraint at the moment. The other node is created by making
a stop at p, to delay its departure time to the upper bound of the forbidden
interval. This is done by following (a) or (b). When the departure time in s or
the arrival time in s violates the constraint, the path is discarded.

This conict resolution approach is also valid in those cases where a direction
change is applicable (a direction change action generates an additional succes-
sor). In all cases, when selecting the departure time, the occupied segments, and
their occupation times are computed following Denitions 2 and 3.



244 M. Salerno et al.

The nal route timetable generated is optimal with respect to the travel time
while complying with the imposed constraints. Considering the way constraints
are created, the solution might not be optimal. Constraints are added using
the vehicle’s occupation time in the resource, not the minimum occupation time
possible for that resource. So a solution that complies with the constraints might
be more costly than one with dierent constraints.

5 Evaluation

We tested 3 networks, following experts’ guidelines, of increasing size: 110, 148,
and 312 segments, with 40, 55, and 115 resources respectively. We ran experi-
ments with an increasing number of agents k, ranging from 2 to 10. The maxi-
mum number of agents seems to be low, but the networks are relatively small.
Hence, we are testing the very complex scenarios due to a high percentage of the
network occupied by agents. This parameter, denoted as %O, is computed as the
number of initially occupied resources divided by the total number of resources
in the network. We randomly assigned a dierent length to each agent from 5 to
25. For all networks, the average segment length is 20, so agents might occupy
two segments in some cases. Each agent has associated a platform as goal.

We tested with three types of deadlines. To compute them, for each network,
we ran 1000 problems with one agent having a random initial position and
destination. The base deadline, bd, is set to the maximum time needed for the
agent to reach its destination among all runs. bd is considered as a hard deadline
in practice, since it is very unlikely the algorithm nds a solution for all agents
that takes less time than bd. The higher the number of agents in the network, the
higher the number of conicts, which causes delays over all vehicles. The other
two deadlines are: d = bd × 2 (medium deadline); and d = bd × 4 (soft deadline).

We generated 100 random problems and ran them for each type of deadline
and number of agents. We gave 60 s to the algorithm to solve each instance and
report: (1) if the problem was solved within the time bound, s; (2) the sum of
costs of all the agents’ plans, soc; (3) the makespan, mk, which is the time step
at which the last agent reaches its destination; and (4) the time t in milliseconds
needed to solve the problem.

Table 1 shows the results1. For the small network, we only report results up to
6 agents since with a higher number of agents none of the problems were solved
within the time bound. A higher number of agents makes the small network
intractable with very high occupancy rates, which prevent agents from reaching
their destinations. For all the networks, increasing the number of agents causes
higher occupancy rates and lower success rates, as expected. Having more agents
in the network means more potential conicts to be solved, many of them being
unsolvable within the given time bound. The success rate drops below 0.5 when
the occupancy of the network is 25% or higher in the small and medium networks.
For the large network, there are worse success rates for lower occupancy rates.
The topology of the network creates a bottleneck in some resources that connect
1 Results obtained on an Intel Core i7 2.9 GHz CPU computer with 16 GB of RAM.



Train Route Planning as a Multi-agent Path Finding Problem 245

Table 1. Results for the three types of networks.

Soft deadline Medium deadline Hard deadline

Network k %O s soc mk t s soc mk t s soc mk t

Small 2 10.0 1.0 122.1 75.8 184.5 0.9 120.2 77.1 147.6 1.0 120.9 76.9 94.7

3 15.0 0.9 174.1 84.2 500.2 0.8 167.5 86.6 581.5 0.9 170.9 86.3 1494.5

4 20.0 0.8 235.1 98.1 1722.4 0.7 226.7 90.5 3186.1 0.8 222.3 89.1 3143.4

5 25.0 0.5 256.8 93.3 2437.0 0.5 261.5 92.5 2430.5 0.6 279.8 97.3 6310.1

6 30.0 0.3 289.5 89.6 2464.9 0.2 302.2 101.1 6784.7 0.3 292.0 98.7 10046.5

Medium 2 7.2 1.0 115.6 74.2 122.2 0.9 116.2 74.8 105.7 0.9 121.7 77.6 81.5

3 10.9 0.9 163.4 79.8 830.8 0.9 165.9 80.7 1056.1 0.9 169.5 80.5 1644.6

4 14.5 0.9 209.9 83.1 1281.1 0.8 209.8 85.3 1365.9 0.9 209.1 81.9 1640.2

5 18.1 0.7 256.8 84.6 3092.4 0.8 240.9 84.6 4122.2 0.8 242.9 81.3 2955.7

6 21.8 0.5 297.6 91.6 7713.5 0.6 283.3 92.3 4579.2 0.7 271.6 81.9 5395.1

7 25.4 0.3 293.8 79.6 8366.5 0.4 308.3 81.0 7828.9 0.5 300.6 86.7 10867.0

8 29.0 0.2 359.6 97.8 10634.9 0.1 355.6 84.6 6660.3 0.2 330.7 88.7 8672.1

9 32.7 0.07 326.5 106.5 11896.5 0.1 356.1 87.7 13187.9 0.09 324.0 79.5 23325.1

10 36.3 0.05 390.5 89.0 28865.7 0.08 365.3 93.1 14941.0 0.1 378.5 90.3 23050.8

Large 2 3.4 0.9 148.1 95.5 90.1 1.0 153.5 96.4 235.6 0.9 163.8 102.7 189.4

3 5.2 0.9 226.5 111.2 244.7 0.9 226.9 109.0 477.4 0.9 221.0 106.8 680.37

4 6.9 0.9 282.7 111.8 990.2 0.9 300.6 117.1 1697.6 0.9 292.4 115.2 2321.1

5 8.7 0.8 344.7 119.4 2909.1 0.8 349.3 120.8 4069.4 0.8 337.1 118.0 1751.0

6 10.4 0.6 401.3 125.8 5492.0 0.7 404.9 122.1 7108.1 0.7 408.3 124.0 4687.2

7 12.1 0.5 446.7 118.2 8220.7 0.5 484.4 126.8 9653.6 0.4 452.6 122.1 6645.8

8 13.9 0.2 497.5 123.5 10284.9 0.2 511.7 129.2 14845.7 0.3 503.5 135.5 10484.7

9 15.6 0.1 509.1 117.9 26109.0 0.2 487.4 117.8 17595.5 0.2 508.9 116.1 14108.9

10 17.3 0.1 555.2 121.5 13578.3 0.08 585.1 118.4 9409.1 0.07 601.6 131.3 14904.5

two main areas, which causes a high number of conicts. Regarding the deadlines,
there is no apparent relationship between the type of deadline and the success
rate. Looser deadlines have a less constrained search space, and the algorithm
might exceed the given time while looking for a solution.

6 Conclusions and Future Work

In this paper we introduced an approach for solving trtp problems as mapf
problems using cbs. We consider specic problem’s features: the search is per-
formed in a dvg, which allows representing implicitly the physical character-
istics of railway networks and exclusive resources related to the railway safety
system; continuous time, deadlines, and actions with duration; agents with arbi-
trary length; direction change maneuvers; and abstract goal denition that may
involve solving the platforming problem.

We evaluated the approach on three dierent scenarios, varying the size of
the network, the number of agents, and the deadline tightness. The results show
that the higher the occupancy rate is, the lower the success rate is, given that a
higher number of agents results in a higher number of potential conicts.

We would like to consider the full complexity inherent to a real trtp, which
would involve dealing with sub-goal sequences in the initial route timetable, vehi-
cle coupling and decoupling maneuvers, resource sharing, deposit operations, and



246 M. Salerno et al.

additional metrics to consider the platforming occupation time or the robustness
of timetables. We would also like to evaluate it in real-world scenarios.

Acknowledgements. This work was funded by research projects TIN2017-88476-
C2-2-R, RTC-2017-6753-4 of Spanish Ministerio de Economı́a, Industria y Competi-
tividad/FEDER UE, and the Madrid government under the Multiannual Agreement
with UC3M in the line of Excellence of University Professors (EPUC3M17), V PRICIT
(Regional Programme of Research and Technological Innovation). This work was devel-
oped in cooperation with Goal Systems S.L. (www.goalsystems.com) whose working
team provided expert knowledge of railway management and its properties. Special
thanks to the technical sta for making this cooperation possible.

References

1. Andreychuk, A., Yakovlev, K., Atzmon, D., Stern, R.: Multi-agent pathnding
with continuous time. In: Proceedings of IJCAI-19, pp. 39–45 (2019)

2. Atzmon, D., Diei, A., Rave, D.: Multi-train path nding. In: Proceedings of SOCS-
19, pp. 125–129 (2019)

3. Cacchiani, V., Furini, F., Kidd, M.: Approaches to a real-world train timetabling
problem in a railway node. Omega 58, 97–110 (2015)

4. Dewilde, T., Sels, P., Cattrysse, D., Vansteenwegen, P.: Robust railway station
planning: an interaction between routing, timetabling and platforming. J. Rail
Transp. Plan. Manag. 3, 68–77 (2013)

5. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathnding
problem: summary and challenges. In: Proceedings of SOCS-17, pp. 29–37 (2017)

6. Flórez, J., Torralba, A., Borrajo, D., Linares López, C., Olaya, A., Sáenz, J.: Com-
bining linear programming and automated planning to solve intermodal trans-
portation problems. Eur. J. Oper. Res. 227, 216–226 (2013)

7. Higgins, A., Kozan, E., Ferreira, L.: Heuristic techniques for single line train
scheduling. J. Heuristics 3, 43–62 (1997)

8. Li, J., Surynek, P., Felner, A., Ma, H., Kumar, T.S., Koeing, S.: Multi-agent path
nding for large agents. In: Proceedings of AAAI-19, pp. 7627–7634 (2019)

9. Ma, H., Wagner, G., Felner, A., Li, J., Kumar, T., Koenig, S.: Multi-agent path
nding with deadlines. In: Proceedings of IJCAI-18, pp. 417–423 (2018)

10. Montigel, M.: Representation of track topologies with double vertex graphs. In:
Computers in Railway, vol. 2 (1992)

11. Murali, P., Ordóñez, F., Dessouky, M.: Modeling strategies for eectively routing
freight trains through complex networks. Transp. Res. Part C Emerg. Technol. 70,
197–213 (2016)

12. Pouryousef, H., Lautala, P., Watkins, D.: Development of hybrid optimization of
train schedules model for n-track rail corridors. Transp. Res. Part C Emerg. Tech-
nol. 67, 169–192 (2016)

13. Qi, J., Yang, L., Gao, Y., Li, S., Gao, Z.: Integrated multi-track station layout
design and train scheduling models on railway corridors. Transp. Res. Part C
Emerg. Technol. 69, 91–119 (2016)

14. Rodŕıguez, J.: A constraint programming model for real-time train scheduling at
junctions. Transp. Res. Part B Methodol. 41, 231–245 (2007)

15. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conict-based search for optimal
multi-agent pathnding. Artif. Intell. 219, 40–66 (2015)


