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Abstract
This study applies Evolutionary Algorithms (EAs) to optimize the
profitability of a hybrid refueling network for conventional and elec-
tric vehicles. Three strategies are explored: reconfiguring existing
stations, siting new ones, and combining both methods. A multi-
agent simulation models stakeholder interactions in a Spanish city,
incorporating behavioral dynamics between users and operators.
The approach features problem-specific objective functions, a com-
pact encoding scheme, and a heuristic to reduce computational cost.
Results show that small, strategically located mixed-use stations
maximize profitability and support EV adoption.

CCS Concepts
• Computing methodologies → Genetic algorithms; Multi-
agent systems; Interactive simulation; • Applied computing→
Multi-criterion optimization and decision-making.
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Electric Vehicle Market, Charging facility location, Genetic algo-
rithms, intelligent agents
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1 Introduction
The Electrical Vehicle (EV) market has experienced huge growth in
the last five years. In 2020, 5% of all sold vehicles were electric. This
market expansion causes big changes in how the users (drivers),
energy companies, car sellers, and other main actors relate to each
other. In this sense, Multi-agent systems (MAS) for simulating the

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s).
GECCO ’25 Companion, July 14–18, 2025, Malaga, Spain
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1464-1/2025/07
https://doi.org/10.1145/3712255.3726622

EV market are required as tools to analyze such interactions em-
pirically. In this paper, we propose Evolutionary Algorithms (EAs)
to optimize different simulation parameters that permit the maxi-
mization of some agents’ internal goals. In our Multi-agent system,
the company agents have the possibility of creating new stations
and deciding on the configuration of each of them to maximize the
benefits, but taking into account that they are part of the market
ecosystem being, at the same time, influenced by it.

This paper assesses the problem of optimizing the EVmiddle-size
infrastructure in terms of refueling or recharging stations location
and configuration to promote the development of the EV market
sharing. The main contributions of this paper are:

• The optimization processes integrated into a multi-agent
system where the various agents actively interact.

• This paper analyzes the problem through three optimization
processes: locating new charging stations, reconfiguring ex-
isting infrastructure, and combining both, enhancing effi-
ciency, revenue, and scalability of the EV charging network.

• This work explores the impact of energy companies’ policies
while emphasizing the need for broader studies collaborating
with governments to drive EV market growth.

2 Related Work
Genetic algorithms (GA) have been widely applied to the allo-
cation of electric charging stations in road networks. For exam-
ple, Jaramillo et al. [4] found GA to outperform other methods in
facility location problems. Celik and Ok [2] provide a summary
of various solution approaches, including GA-based ones. In con-
trast, little work addresses the configuration of mixed gas-electric
charging stations. However, decentralized optimization of charg-
ing/discharging processes has been studied under both coopera-
tive Li et al. [8] and non-cooperative Alghamdi et al. [1] frameworks

Multi-agent approaches to this problem using intelligent agents
are scarce. The work by Jordán et al. [5] presents a multi-agent sys-
tem where agents do not represent real characters but are in charge
of system functionalities like collecting environment information,
managing the user interface, etc. In the paper Kangur et al. [6], the
authors use a multi-agent system to model EV market diffusion
via social simulation. Our work differs from the previous ones in
that we present a bottom-up multi-agent system approach, where
agents represent the main stakeholders of the EV Market, and the
system dynamics are based on the complex relationships between
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them. In this environment, the agents that represent gas and electric
suppliers use GA for optimizing the locations and configurations
of gas/electric stations which allows us to analyze the impact of
the network configuration change in the ecosystem.

3 Multi-agent architecture description
Our model presents a framework to simulate the interactions be-
tween various agents involved in the electric vehicle and energy
sectors. It is capable of modeling intra-urban or inter-urban envi-
ronments, their populations, and service stations, as well as the in-
teractions among them. It is based on the closed systems paradigm,
where every trip’s origin and destination fall within the environ-
ment. The system defines how people take trips and decide where
to refuel and when and which model of vehicle to buy. The primary
objective of this framework in this study is to provide a tool for
assessing the long-term effects of different policy decisions on en-
ergy company profitability. By capturing both individual behaviors
and synergistic interactions, the framework offers insight into how
factors such as infrastructure investments influence the transition
to electric mobility. Specifically, we are interested in assessing the
influence of the location and configuration of gas/electric stations
on the EV market share.

Our Multi-agent simulation framework is structured into sev-
eral core agent types, each representing a stakeholder. Vehicles
simulate energy consumption, deterioration, and breakdowns, influ-
encing consumer satisfaction and decisions. Consumersmaximize
a utility function based on a cognitive satisfaction model. This is
achieved by deciding where to refuel, which vehicle to purchase,
and when to travel or refuel. Service Stations simulate the opera-
tion of refueling and charging stations by managing queues, service
delivery, expenses, and revenue. Energy Companies optimize sta-
tion configurations and locations using Evolutionary algorithms
(EAs) to maximize profits. The Energy Market reflects dynamic
energy price changes driven by market rules. The Environment
provides spatial and demographic data that influence agent deci-
sions and interactions, and their initialization.

We consider a synchronous Multi-agent framework to tackle
operational issues [10]. Agents operate in a specified order and time
is discretized into days. At the organizational level, our framework
features a mixed structure, combining elements of decentralized
and hierarchical systems [12, 13]. A service station must implement
the changes decided by the energy company that owns it, and the
energy company must adhere to the energy market prices. At the
same time, all agents retain some independence to perform other
actions, and no central coordinator dictates how all agents should
behave. The energy company agent uses EA to make decisions
about the configuration and location of the gas stations.

4 Optimization based on EAs
EAs are stochastic search algorithms that use a heuristic based on
natural selection and evaluation. They consist of several elements:
the genome coding which is used to represent each solution; the
population generation, the fitness function that is used to evaluate
each possible solution and guide the search process; the selection
procedure to determine the best solutions; the modification of each

solution to create new individuals with the crossover and muta-
tion operators; and the stop criteria. We opt for the Differential
evolution [11] algorithm for our optimization processes. This is a
popular EA with convenient properties: it converges well, handles
non-differentiable cost functions, and has few parameters to tune.

4.1 Problem Formalization
We propose three optimization strategies: distributing pumps in
existing stations, selecting locations for a limited number of new
stations with predefined supply types, and a combined approach
optimizing both. All strategies use clear profit functions based on
revenue-cost differences, as followed by Gan et al. [3].

Definition 1 (Optimizing the Distribution of gas-electric
pumps). Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} represent the set of refueling stations,
where each station 𝑠𝑖 can have 𝑝𝐺

𝑖
gas pumps with an associated cost

and revenue (𝐶𝐺
𝑖
, 𝑅𝐺

𝑖
(𝑝𝐺

𝑖
)), 𝑝𝐸

𝑖
electric pumps with associated cost

and revenue (𝐶𝐸
𝑖
, 𝑅𝐸

𝑖
(𝑝𝐸

𝑖
)) and a maximum capacity Cap𝑖 . Then the

objective is to maximize the profit 𝑃 :

max
𝑝𝐺
𝑖
,𝑝𝐸

𝑖

𝑃 =

𝑛∑︁
𝑖=1

(
𝑅𝐺𝑖 (𝑝𝐺𝑖 ) + 𝑅𝐸𝑖 (𝑝

𝐸
𝑖 ) − 𝑝𝐺𝑖 ·𝐶𝐺

𝑖 − 𝑝𝐸𝑖 ·𝐶𝐸
𝑖

)
where 𝑝𝐺

𝑖
+ 𝑝𝐸

𝑖
≤ Cap𝑖 and 𝑝

𝐺
𝑖
, 𝑝𝐸

𝑖
≥ 0.

Definition 2 (Optimizing the Location of gas-electric sta-
tions). Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚} represent the potential locations for
new refueling stations. Each station can be either fully gas, fully elec-
tric, or 50% gas and 50% electric with a specific capacity 𝐶𝑎𝑝𝑖 . Each
station has a fuel cost associated and some revenue (𝐶𝐺

𝑖
, 𝑅𝐺

𝑖
(𝑝𝐺

𝑖
))

and an electric cost associated and some revenue (𝐶𝐸
𝑖
, 𝑅𝐸

𝑖
(𝑝𝐸

𝑖
)). Ad-

ditionally, we have a maximum number of new stations 𝑁max and
some decision variables:

• 𝑥𝐺
𝑖

∈ {0, 1}: 1 if a station has gas pumps at 𝑖 , 0 otherwise
• 𝑥𝐸

𝑖
∈ {0, 1}: 1 if a station has electric chargers at 𝑖 , 0 otherwise

Hence the objective is to maximize the profit 𝑃 :

max
𝑝𝐺
𝑖
,𝑝𝐸

𝑖
,𝑥𝐺
𝑖
,𝑥𝐸
𝑖

𝑃 =

𝑛∑︁
𝑖=1

(
𝑅𝐺𝑖 (𝑝𝐺𝑖 ) + 𝑅𝐸𝑖 (𝑝

𝐸
𝑖 ) − 𝑝𝐺𝑖 ·𝐶𝐺

𝑖 − 𝑝𝐸𝑖 ·𝐶𝐸
𝑖

)
where:

• 𝑝𝐺
𝑖

= 𝐶𝑎𝑝𝑖 · (
1+𝑥𝐺

𝑖
−𝑥𝐸

𝑖

2 )

• 𝑝𝐸
𝑖
= 𝐶𝑎𝑝𝑖 · (

1+𝑥𝐸
𝑖
−𝑥𝐺

𝑖

2 )
• ∑𝑚

𝑖=1max(𝑥𝐺
𝑖
, 𝑥𝐸

𝑖
) ≤ 𝑁max

Definition 3 (Optimizing the Location and Distribution
of gas-electric pumps). Let’s consider a unified set of stations
𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛+𝑚}, where 𝑠1, . . . , 𝑠𝑛 are existing stations and
𝑠𝑛+1, . . . , 𝑠𝑛+𝑚 are potential new stations. Each station 𝑠𝑖 can have
gas pumps (𝑝𝐺

𝑖
) with an associated cost and revenue (𝐶𝐺

𝑖
, 𝑅𝐺

𝑖
(𝑝𝐺

𝑖
)),

electric pumps (𝑝𝐸
𝑖
) with associated cost and revenue (𝐶𝐸

𝑖
, 𝑅𝐸

𝑖
(𝑝𝐸

𝑖
))

and a maximum capacity (Cap𝑖 ). Additionally, we have a maximum
number of new stations 𝑁max and some decision variables:

• 𝑝𝐺
𝑖

≥ 0: Number of gas pumps at station 𝑠𝑖
• 𝑝𝐸

𝑖
≥ 0: Number of electric pumps at station 𝑠𝑖

• 𝑥𝑖 ∈ {0, 1}: 1 if station 𝑠𝑖 is active (1∀𝑖 ≤ 𝑛), 0 otherwise

868

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0003-9997-0583
https://orcid.org/0000-0002-2795-2816
https://orcid.org/0000-0001-9385-9532
https://orcid.org/0000-0003-3801-6801


Evolutionary optimization of the gas/charging stations topology for the Electric Vehicle Market GECCO ’25 Companion, July 14–18, 2025, Malaga, Spain

Then the objective is to maximize the profit 𝑃 :

max
𝑝𝐺
𝑖
,𝑝𝐸

𝑖
,𝑥𝑖

𝑃 =

𝑛+𝑚∑︁
𝑖=1

(
𝑅𝐺𝑖 (𝑝𝐺𝑖 ) + 𝑅𝐸𝑖 (𝑝

𝐸
𝑖 ) − 𝑝𝐺𝑖 ·𝐶𝐺

𝑖 − 𝑝𝐸𝑖 ·𝐶𝐸
𝑖

)
· 𝑥𝑖

where 𝑝𝐺
𝑖
+ 𝑝𝐸

𝑖
≤ Cap𝑖 and

∑𝑛+𝑚
𝑖=𝑛+1 𝑥𝑖 ≤ 𝑁max.

4.2 Representation of the solutions
Solution representations are a key factor in EAs. Codification must
be unique and with few redundancies. Thus we generate a different
codification for each optimization process.

Distribution optimization. We consider a set of stations 𝑆 =

{𝑠1, 𝑠2, . . . , 𝑠𝑛} where each station 𝑠𝑖 is represented by a vector
v𝑖 = [𝑣1

𝑖
, 𝑣2
𝑖
, . . . , 𝑣𝑃−1

𝑖
], representing the cumulative sum of pumps

by type in ascending order, including an extra slot for empty pumps.
This representation comes with some restrictions:

• 𝑣
𝑗+1
𝑖

≥ 𝑣
𝑗
𝑖

• 𝑐1
𝑖
= 𝑣1

𝑖
, where 𝑐 𝑗

𝑖
is the of pumps of type 𝑗 in station 𝑖

• 𝑐
𝑗
𝑖
= 𝑣

𝑗
𝑖
− 𝑣

𝑗−1
𝑖

for 𝑗 > 1 and 𝑗 < 𝑃

• 𝑐𝑃
𝑖
= Cap𝑖 − 𝑣𝑃−1

𝑖

We relax the sorting constraint to allow an unordered version
v′, expanding the search space and avoiding invalid solutions. For
example, with 3 stations and capacity 8, the vector {[0,4],[2,3],[5,7]}
represents the distribution of empty, fuel, and electric pumps. This
corresponds to using 0, 2, and 5 pumps as empty pumps respectively,
4, 1, and 2 for fuel, and 4, 5, and 1 for electric pumps.

Location optimization. We define a set of possible stations 𝑆 =

{𝑠1, 𝑠2, . . . , 𝑠𝑛} using vectors l𝑖 = [pos𝑥
𝑖
, pos𝑦

𝑖
, 𝑝

𝑓

𝑖
, 𝑝𝑒

𝑖
], where the

position (pos𝑥
𝑖
, pos𝑦

𝑖
coordinates) and type 𝑝

𝑓

𝑖
, 𝑝𝑒

𝑖
∈ {0, 1} (fuel

(1, 0), electric (0, 1), mixed (1, 1) or not placed (0, 0)) are encoded.
For example, with up to 4 stations, {[134.72, 19.81, 0, 0],[130.18,
50.25, 1, 0],[99.32, 79.01, 0, 1], [119.84, 63.99, 1, 1]} shows the first
station is not placed while the rest are placed as fuel, electric, and
mixed respectively.

Combined optimization. To meet both objectives, we combine
distribution and location optimization. We define stations 𝑆 =

{𝑠1, 𝑠2, . . . , 𝑠𝑛+𝑚}, where 𝑛 are existing and the rest are potential
new ones. Each station uses l𝑖 = [pos𝑥

𝑖
, pos𝑦

𝑖
, 𝑝𝑖 , 𝑣

1
𝑖
, 𝑣2
𝑖
, . . . , 𝑣𝑃−1

𝑖
]

where 𝑝𝑖 ∈ {0, 1} indicates if it is placed and 𝑣 𝑗
𝑖
defines its configu-

ration applying the same transformation used in the distribution
problem. For example, {[0,4],[2,3],[134.72, 19.81, 0, 0, 3],[99.32, 79.01,
1, 4, 6]} represents two existing stations and two potential ones,
with only the second new station placed and configured with 4
empty slots, 2 fuel pumps, and 2 electric pumps.

4.3 A Heuristic for Fitness Computation
Evaluating solutions is challenging due to the high cost of running
full 10-year simulations. To overcome this, we created a heuristic
that estimates long-term profit by simulating only the first month to
gather queue data. Then, we estimate how often and where agents
would refuel with optimal vehicles, allowing us to approximate the
average profit. This approach speeds up evaluation by a factor of
50. Additionally, we use a solution dictionary that maps ordered
solution vectors to their costs, avoiding redundant calculations.

5 Experimental Setup
This section defines the baseline and evaluation metrics followed
by three optimization strategies: individual station configuration,
spatial distribution, and a combined approach.

Evaluation Benchmark: We apply EAs for optimization, and
compare it using both informed and uninformed strategies. In-
formed methods leverage environmental data, while uninformed
ones do not. Simulations run for ten years to assess long-term ef-
fects, with a baseline configuration for comparison. Key metrics
include total profit, electric pump profit, and the percentage of
electric cars. The baseline has no electric pumps, allowing us to
evaluate the impact of their introduction.

Optimizing the Distribution of Gas-Electric Pumps: We
optimize pump types (fuel or electric) at refueling stations using
two approaches: one based on fixed percentages across all stations,
and another where stations adjust their pump types based on the
surrounding car type distribution.

Optimizing the Location of Gas-Electric Pumps: To place
new refueling stations, we use k-means clustering [9], with cen-
troids representing new station locations. The number of clusters
reflects station size—larger clusters for high demand, smaller for
specific points. The stations are configured either fully electric or
as a mix of fuel and electric pumps.

Optimizing the Position and Distribution of Gas-Electric
Pumps:We combine the previous objectives by using methods like
k-means with proportional distribution, pseudo-LVQ (a version of
the original LVQ [7]) for engine-type-based centroids, and a refined
pseudo-LVQ with proportional distribution. These methods simul-
taneously address station placement and pump type distribution,
ensuring the system aligns with demand.

6 Experiments and Results
This study compares EA optimization to benchmark strategies and
a baseline over a 10-year simulation, focusing on company profit,
relative electric market gain, and EV adoption. Set in Alcorcón,
Spain, the simulation uses real-world data on demographics, infras-
tructure, and vehicle types. Initially, the energy company owns 7
of 31 stations, none with EV charging. Results appear in Figure 1.

EA achieves the highest profit in the distribution optimization
task, where pump types are reassigned within existing stations,
especially when its allocations align with the actual vehicle distri-
bution in the simulation. Configurations increasing electric pumps
tend to encourage greater EV adoption, though benchmarks with
fixed percentages also show strong results in electric market gains.

Location optimization explores two station addition strategies:
a few large or many small stations. Results indicate that mixed-
supply stations are generally more profitable, serving traditional
and electric vehicles. From the EA perspective, this rule is not
followed. Big stations tend to be principally fuel-based not coupling
with the electric demand. On the contrary, small stations promote
higher EV adoption, as they address local demand more effectively.

When optimizing both location and distribution simultaneously,
pseudo-LVQ methods outperform electric market share and prof-
itability, particularly with small stations. EA continues to maximize
profit but may underperform in EV-related metrics due to its ob-
jective being solely profit-driven. Even without explicitly targeting
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Figure 1: Comparison of total profit, EVs percentage in the fleet, and electric profit gain from left to right. Rows refer to
distribution, location or combined problems from top to bottom. Baseline is the default configuration, big is for two 10 pump
stations, small is for ten 2 pump stations, prop is for proportional to people nearby, percentages are for fixed values, and class
is for pumps related to centroid’s class. k-means, p-lvq and EA refer to each algorithm used.

EV expansion, EA solutions include electric pumps, highlighting
the interdependence of demand and supply in a dynamic market.

7 Conclusions
This work shows that optimizing the location and configuration
of refueling stations can significantly impact both company profit
and EV adoption. Mixed-type stations placed in high-demand areas,
especially when guided by pseudo-LVQ, offer the best balance be-
tween profitability and support for electrification. While EA focuses
on maximizing profit, it still tends to include electric infrastructure,
indirectly fostering EV growth. Overall, high-density networks of
small stations are most effective in promoting EV uptake. Future
work will expand the optimization objectives to include electric
gains and relax constraints on station placement and capacity.
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