
Dataset Reduction for Offline Reinforcement Learning using
Genetic Algorithms with Image-Based Heuristics
Enrique Mateos-Melero

Universidad Carlos III de Madrid

Leganés, Spain

enmateos@pa.uc3m.es

Miguel Iglesias Alcázar

Universidad Carlos III de Madrid

Leganés, Spain

migigles@pa.uc3m.es

Raquel Fuentetaja

Universidad Carlos III de Madrid

Leganés, Spain

rfuentet@inf.uc3m.es

Fernando Fernández

Universidad Carlos III de Madrid

Leganés, Spain

ffernand@inf.uc3m.es

Abstract
In offline Reinforcement Learning (RL), the size and quality of the

training dataset play a crucial role in determining policy perfor-

mance. Large datasets can lead to excessive training times, while

low-quality data can result in sub-optimal policies, particularly for

deep learning-based RL frameworks. To address these challenges,

we propose a novel approach that leverages genetic algorithms for

efficient dataset reduction, paired with image-based learning using

Convolutional Neural Networks (CNNs) to reduce the evaluation

time of the fitness function. Specifically, our method predicts the

performance of policies (fitness) learned from offline RL datasets

(phenotype) and identifies optimized subsets that preserve or en-

hance policy quality. We evaluate our approach across three well-

established RL domains, demonstrating that it effectively reduces

dataset size while maintaining or improving policy performance.

Furthermore, we show the transferability of the learned models to

similar tasks, enabling efficient dataset optimization via transfer

learning.

CCS Concepts
• Computing methodologies → Machine learning; Genetic
algorithms; Markov decision processes; Neural networks.

Keywords
Offline Reinforcement Learning, Genetic algorithms, Dataset Qual-

ity, Learning Performance Prediction, Convolutional Neural Net-

works

ACM Reference Format:
Enrique Mateos-Melero, Miguel Iglesias Alcázar, Raquel Fuentetaja, and Fer-

nando Fernández. 2025. Dataset Reduction for Offline Reinforcement Learn-

ing using Genetic Algorithms with Image-Based Heuristics. In Genetic and
Evolutionary Computation Conference (GECCO ’25), July 14–18, 2025, Malaga,
Spain. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3712256.

3726364

This work is licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License.

GECCO ’25, July 14–18, 2025, Malaga, Spain
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1465-8/2025/07

https://doi.org/10.1145/3712256.3726364

1 Introduction
In classical Reinforcement Learning (RL) methods, such as tabular

approaches [21], computational time was not a significant concern

as learning costs were typically measured based on the resources

required to gather training examples. However, recent research in

RL, such as off-line RL [13] or batch approaches in on-line RL [10],

which can be computationally intensive, has highlighted the need

to reduce learning time.

A fundamental approach to achieving this reduction is decreas-

ing the number of training instances, as computational time is

typically at least linearly related to this number [8]. However, for

a specific task with a training set of size 𝑀 consisting of experi-

ence episodes and other RL parameters (e.g., representation model,

algorithm), selecting a smaller subset of experiences that still al-

lows for near-optimal policy learning is a complex problem. In this

paper, our focus is on providing an accurate, cost-efficient, and

transferable solution to this problem.

By “accurate”, we mean that the performance of the learned

policy with the reduced training set should be at least as good

as with the entire dataset. By “cost-effective”, we mean that the

computational cost of determining this subset and learning with it

should be lower than the cost of learning with the entire dataset.

By “transferable”, we mean that the solution learned to determine

the performance for a specific task can be applied to similar tasks,

increasing utility. Our approach addresses several questions sequen-

tially: a) Can we find a method to reduce a training set of size𝑀 to

a smaller one of size 𝑁 , where 𝑁 ≪ 𝑀 , without sacrificing perfor-

mance? b) Can we do this efficiently? c) Can the models generated

by this method be reused in similar tasks?

To achieve this, we propose framing the reduction of the training

set as an optimization problem, where the objective is, given a set of

episodes and a learning framework (RL algorithm, parameters, etc.),

to select a subset of episodes that maximizes a specific metric. The

goal is to minimize the training set while retaining episodes that

enable accurate policy learning with the RL framework. Due to the

vast number of possible episode subsets (the power set of the set

of episodes), finding an optimal solution is infeasible. Instead, we

employ a genetic algorithm, where each individual represents a dif-

ferent subset of the training set. The fitness function is determined

by the accuracy of the policy learned from the corresponding subset

and is inversely proportional to its size, favoring more accurate

policies and smaller training sets.

416

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801
https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801
https://orcid.org/0000-0003-3801-6801
https://doi.org/10.1145/3712256.3726364
https://doi.org/10.1145/3712256.3726364
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3712256.3726364
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712256.3726364&domain=pdf&date_stamp=2025-07-13

GECCO ’25, July 14–18, 2025, Malaga, Spain Enrique Mateos-Melero, Miguel Iglesias Alcázar, Raquel Fuentetaja, and Fernando Fernández

To address the computational cost issue, we introduce a heuris-

tic that reduces the overhead of computing the fitness function.

Instead of conducting RL processes, we learn a predictive model

for estimating the policy’s performance derived from a training set.

In offline RL, where dataset quality is crucial for learning an effec-

tive policy, we leverage Convolutional Neural Networks (CNNs)

[12] to efficiently evaluate datasets and forecast their impact on

policy learning. Our approach enables rapid estimation of dataset

performance, which is critical for applications like transfer learning

[23, 31], curriculum learning [14], Sim2Real [30], and batch RL [11].

Furthermore, we assess the transferability of predictive models

by applying them to new scenarios with modified state space sizes

or state transition functions. The results demonstrate promising

capabilities for reusing models in similar tasks, opening up oppor-

tunities for applications in various RL contexts. Additionally, we

explore the use of genetic algorithms applying our predictive model

to enhance dataset quality, providing a method to create efficient

datasets for RL training.

The structure of this paper is as follows: Section 2 provides back-

ground on RL, Section 3 formalizes the Episode Selection Problem

as an optimization task and describes our genetic-based solution,

Section 4 describes how we efficiently estimate the fitness function

with Deep Learning and its image-based solution, and the results in

three different environments. Section 5 reviews related work, and

Section 6 offers conclusions and directions for future work.

2 Preliminaries
Reinforcement Learning (RL) addresses the problem of learning to

control a dynamic system defined by a Markov Decision Process

(MDP) [21]. AnMDP can be defined as a tupleM = ⟨𝑆,𝐴, 𝑅,P, 𝛾,I, 𝛽⟩,
where 𝑆 is a set of states; 𝐴 is a set of actions; 𝑅 is a reward func-

tion 𝑅 : 𝐴 × 𝑆 → 𝑃𝑟 [R], P : 𝑆 × 𝐴 × 𝑆 → 𝑃𝑟 [𝑆] is a transition

distribution function; 𝛾 ∈ [0, 1) is a discount factor; I : 𝑃𝑟 [𝑆] is
an initial state distribution; and 𝛽 : 𝑆 → {0, 1} is an episode ter-

mination function. At time step 𝑡 , the state of the environment is

𝑠𝑡 and the agent, using its behavior policy 𝜋 : 𝑆 → 𝑃𝑟 [𝐴], selects
an action 𝑎𝑡 that when executed in the environment, produces a

reward 𝑟𝑡 ∼ 𝑅(𝑠, 𝑎) and leads to a new state 𝑠𝑡+1 ∼ P(𝑠, 𝑎). The
sequence (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is called an experience. A sequence of ex-

periences is an episode. When 𝛽 (𝑠′) = 1 or a horizon 𝑇 is reached

the episode ends. The sequence of state-action transitions in an

episode is a trajectory, 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . .), which can be derived

directly from the episodes.

Given a policy 𝜋 , the long-term discounted return J (𝜋), defined
by Equation 1, is its expected cumulative discounted reward. An op-
timal policy 𝜋∗ is a policy maximizing J (𝜋): 𝜋∗ = argmax𝜋 J (𝜋).
The objective of an RL agent is to learn an optimal policy.

J (𝜋) = E𝑠0∼I,𝑠𝑡+1∼P(𝑠𝑡 ,𝜋 (𝑠𝑡)),𝑟𝑡∼𝑅 (𝑠𝑡 ,𝜋 (𝑠𝑡))

[∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
(1)

In online RL, the agent learns through trial and error by inter-

acting with the environment [21]. However, in offline RL, which

is a fully data-driven method, the agent is not allowed to interact

with the environment during learning [11, 13]. Instead, it receives

a dataset De𝑛𝑣 consisting on set of𝑀 episodes sampled from the

environment, De𝑛𝑣 = {𝑒𝑖 }𝑖=1,...,𝑀 . Since the training data is given,

and it is usually finite, the agent can not expect to come up with an

optimal policy. Then, the objective of the agent is to derive the best
possible policy from the dataset for the given environment [11].

3 Episode Selection Problem
In offline RL, the input dataset, denoted as De𝑛𝑣 , can often be

overwhelmingly large, making the execution time of the learning

algorithm impractical. Additionally, the dataset’s source may be

a mixture of “good” and “bad” policies. Therefore, a fundamental

question arises: Can we significantly reduce the size of De𝑛𝑣 while

still enabling the learning algorithm to produce a high-quality

policy? This question essentially frames the problem as a multi-

objective optimization task. On one hand, we aim to minimize

the size of the resulting dataset and, on the other hand, we seek

to maximize the quality of the policy learned from it. However,

it is possible to simplify this into a single-objective optimization

problem by combining both objectives into a single metric. Let us

define the Episode Selection Problem (ESP) metric, denoted as 𝜓 ,

as follows:

Definition 1 (ESP Metric 𝜓). Let D be a set of episodes, 𝜃 be
a representation of the RL framework (algorithms, parameters, . . .)
and let ˆJ (D|𝜃) represent an estimate of the performance of the best
possible policy 𝜋D that an RL agent can learn from D given 𝜃 , such
that ˆJ (D|𝜃) ≈ J (𝜋D |𝜃). Then, the ESP metric 𝜓 : D → R is
defined as:

𝜓 (D|𝜃) = 𝑓 (ˆJ (D|𝜃), |D|)

where 𝑓 is a weighted sum of ˆJ (D|𝜃) and 1

|D | .

Note that we always maintain the dependency with the RL frame-

work, 𝜃 . It is easy to understand that, if this framework changes (for

instance, the generalization method), the gain obtained by learning

with the same dataset may vary. For simplicity of the notation, we

eliminate this dependency in the notation in the rest of the paper.

Therefore, with this metric in place, we can formally define the

Episode Selection Problem (ESP) as follows:

Definition 2 (Episode Selection Problem, ESP(D,𝜓)). Given
a set of episodes D and a metric 𝜓 , find a reduced subset D∗ ⊆ D
that maximizes𝜓 :

D∗ = argmax

D′⊆D
𝜓 (D′)

An optimal ESP could theoretically be solved by a brute-force

approach, by generating all possible subsets of the input dataset and

evaluating them using the metric 𝜓 under 𝜃 . However, given the

potentially enormous size of De𝑛𝑣 and the exponential number of

subsets (2
|De𝑛𝑣 |

), such a brute-force approach is not feasible. Instead,

we propose a method to find a suboptimal solution using stochastic

search. Specifically, we employ a genetic algorithm [7, 15], where

each individual in the population represents a different subset of

the training set, and the fitness function is defined in terms of the

ESP metric,𝜓 .

417

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

3.1 Genetic Algorithm for Solving the Episode
Selection Problem

To solve an episode selection problem, ESP(D,𝜓), with a genetic

algorithm (GA) we need to represent the reduced datasets as indi-

viduals of the population and define the fitness function.

Each chromosome is encoded as a string of binary values repre-

senting which episodes in the input dataset D are selected. Each

individual thus represents a reduced datasetD′ ⊆ D containing the

selected episodes. The length of the string is the number of episodes

inD, |D|. Each gene of the chromosome represents the presence of

the corresponding episode inD′
. Formally, letD = {𝑒1, 𝑒2, . . . , 𝑒𝑀 }

be the input dataset, where 𝑒𝑖 is the 𝑖-th episode in D and |D| = 𝑀 .

Let 𝑋 be the space of all possible individuals. Then, every 𝑥 ∈ 𝑋

is defined as 𝑥 = 𝑥1, 𝑥2, . . . , 𝑥𝑀 , where 𝑥𝑖 is the 𝑖-th gene of the

individual and 𝑥𝑖 ∈ {0, 1}. The mapping function from the genotype

to the phenotype is 𝜌 : 𝑋 → 2
D

so that given an individual 𝑥 ∈ 𝑋 ,

the corresponding reduced dataset is 𝜌 (𝑥) = {𝑒𝑖 ∈ D | 𝑥𝑖 = 1}.
The fitness of each 𝑥 ∈ 𝑋 is computed using the ESP metric 𝜓

(Definition 2), just by applying𝜓 to 𝜌 (𝑥). Thus, the fitness function,
𝜙 : 𝑋 → R, is defined as 𝜙 (𝑥) = 𝜓 (𝜌 (𝑥)). However, we need to

define a way to estimate the performance of the best policy that

can be learned by an RL agent in a specific RL framework 𝜃 for

each subset. A direct approach to obtain that estimate is to perform

the RL process to learn a policy 𝜋D′ from D′
, and then evaluate

that policy through executions in the environment. We define the

estimate of the performance for D′
obtained by RL as the average

discounted return obtained in those episodes:

ˆJRL (D′) = 1

|D′ |
∑︁
𝑒∈D′

𝑡𝑒∑︁
𝑡=0

𝛾𝑡𝑟𝑒,𝑡 (2)

where 𝑡𝑒 and 𝑟𝑒,𝑡 represent the last time step of episode 𝑒 ∈ D′
and

the reward obtained at time step 𝑡 in that episode, respectively.

3.2 Running Example with Frozen Lake
As a running example to show the ability of the GA to reduce the

size of the dataset, we utilize the Frozen Lake environment. This

is a grid-like environment from the Toy Text section of OpenAI’s

Gymnasium
1
. The goal is to reach the treasure from the starting

position. It is a discrete, bi-dimensional environment with a delayed

reward.

Our running example, uses a 12x12 grid map (see Figure 1),

with initial and goal positions randomly placed within the grid.

Additionally, approximately 20% of the grid’s surface is randomly

populated with holes.

The input dataset, denoted as De𝑛𝑣 , is generated through an on-

line RL process in the new environment using the online Q-learning

algorithm [21] with an 𝜖-greedy approach. De𝑛𝑣 is constructed by

running the sub-optimal model obtained during online training 100

times. Thus, |De𝑛𝑣 | = 100. We employ an offline tabular Q-learning

algorithm as our fixed RL agent for evaluating dataset performance

using Equation 2. After each learning process, we evaluate the re-

sulting policy by running it 10 times, starting from a fixed initial

1
https://gymnasium.farama.org/

Figure 1: Example of dataset gathering.

state, and computing the average undiscounted return. This ap-

proach simplifies the metric, ensuring it yields binary values (0 or

1) for deterministic environments.

From the GA perspective, we use 𝜓 (D′) = 0.8 × ˆJ (D′ | 𝜃) +
0.2 × 1

|D′ | as ESP metric, where
ˆJ𝑅𝐿 (D′) is the evaluation value

obtained forD′
by the Q-learning algorithm. The genetic algorithm

runs for 70 generations with a population size of 50 randomly sam-

pled individuals containing approximately 50% of the total episodes.

The selection process is performed by tournament selection with a

tournament size of 5. Mutation switches gene values with a proba-

bility of
1

|D | and the crossover is performed gene-wise by selecting

the gene from one of two predecessors.

3.3 Results
Figure 2 illustrates the evolutionary trends (evolution of the policy

and evolution of the number of selected episodes) resulting fromfive

executions of the genetic algorithm. Notably, the dataset generated

by the genetic algorithm consistently retains approximately 10-20%

of the original dataset’s episode count, all while preserving the

optimal policy.

Figure 2: RL genetic algorithm results. On the left is the pol-
icy evolution and on the right is the number of episodes
evolution. The orange lines represent the population’s av-
erage values and the blue lines the best individual of the
population.

4 Image-based Heuristics
It is important to note that using the previous scheme each time

the fitness function is computed we need to compute
ˆJRL (D′)

and subsequently learn 𝜋D′ under the framework 𝜃 . Then, the

418

GECCO ’25, July 14–18, 2025, Malaga, Spain Enrique Mateos-Melero, Miguel Iglesias Alcázar, Raquel Fuentetaja, and Fernando Fernández

described method is not useful when it is necessary to estimate the

performance of a dataset quickly. It would be preferable to have

a predictive model that allows obtaining a rapid estimate directly

from the entire dataset at once. We define formally the problem of

finding this model as the Performance Prediction Problem (P3).

Definition 3 (Performance Prediction Problem (P3)). Let
D be a set of episodes and 𝜃 be an RL framework (algorithm, pa-
rameters, etc.). The P3 consists of finding a function ˆJ𝑀 : D → R
that approximates the return that would be obtained with the best
policy, 𝜋D , that can be learned from D by an RL agent given 𝜃 :
ˆJ𝑀 (D | 𝜃) ≈ J (𝜋D | 𝜃).
Given Definition 3, we need to obtain a function that can ap-

proximate the return obtained with the best policy. This kind of

function does not exist or it can not be computed mathematically

to do it quickly. Thus we propose to use a neural network (NN)

model as our function approximator.

In most cases, the datasets are composed of numerical values.

The representation of states of the environment is a set of tuples

with a numerical value for each feature (like position x and y). To

prepare datasets for input into predictive models, a suitable repre-

sentation is essential. If we use the basic numerical representation

we would need to consider each episode 𝐸 in the dataset with its

corresponding experience tuples𝑇 , and the state 𝑆 usually has more

than one dimension. Then, the input data into the model would

correspond to 𝐸 ×𝑇 × 𝑆 features which is impractical in most cases.

Thus, we adopt a novel approach by representing entire datasets as

images, tailored to the specific domain characteristics from which

the dataset originates.

Representing datasets as images arises from the potential of

visualizing the entire dataset in a single image. In addition, we con-

sider the significance of spatial information in determining dataset

quality. Deep neural networks, particularly convolutional neural

networks (CNNs), stand to benefit from this data format, leveraging

their ability to extract features from spatial representations.

4.1 Representing Datasets as Images
Representing datasets as images depends on the state dimension-

ality or the environment dynamics. Since the representation of

datasets as images must be adapted to each domain, it is difficult

to define a general method to define the images. Then, we propose

different alternatives. We study their applicability by selecting three

domains that reflect these characteristics: Frozen Lake, Mountain
Car and Acrobot. These domains were selected to cover a range of

RL environment characteristics, including state space (discrete or

continuous), the number of state space dimensions, and the type of

reward (delayed or instant).

Mountain Car is a classic control problem also from OpenAI’s

Gymnasium. The goal is to reach the top of the hill using momen-

tum. It is a continuous, bi-dimensional environment with a delayed

reward. Originally, Gymnasium’s implementation featured an in-

stant reward, but it was modified to match the characteristics of

Frozen Lake, with a final goal to achieve.Acrobot is another classic
control problem. It consists of two pendulums aiming to surpass a

given height. This domain has a continuous, 6-dimensional state

space with instant reward. Snapshots from these environments are

shown in the top row of Figure 3.

Our image representation focuses solely on the states within the

datasets. While actions could also be included, we opt to omit them

from the images. This decision stems from the observation that ac-

tions can often be interpreted based solely on state distribution, and

integrating them into images may not always be straightforward.

Additionally, our experimental results demonstrate that utilizing

only state information yields sufficiently accurate results. We pro-

pose two different ways of representing datasets as images: state

(or state abstractions) scatter plots and rendered images.

State (Abstractions) Scatter Plots. The idea is to use a straightfor-

ward approach by creating scatter plots of all states, providing a

visualization of the spatial distribution. For bi-dimensional state

spaces, this method captures the bi-dimensional structure of the en-

vironment and provides additional contextual information. Points

represent the states, with the start position indicated by a red point

and the goal position by a green point or area. In high-dimensional

state spaces, generating those scatter plots is unfeasible. One solu-

tion is to employ dimensionality reduction techniques such as Prin-

cipal Component Analysis (PCA) [17], t-SNE [24] and autoencoders

[3] to transform states into two-dimensional spaces for visualiza-

tion. After testing with the three approximations, we decided to use

autoencoders since the others obtained worse results. Then we rep-

resented the bi-dimensional abstraction of the original states with

a scatter plot using the latent representation of the autoencoders.

The middle row of Figure 3 shows examples of each environment

using this representation.

Rendered Images. The idea is to use rendered versions of the en-

vironments.
2
The first step is gathering the frames of each state rep-

resented in the dataset. The images are then converted to grayscale

and thresholded to separate the background (black) from the envi-

ronment objects (white). This step reduces the number of channels

that feed CNN and captures the motion in the environment. Next,

we sum all the pixel values from the dataset frames and normalize

the result between 0 and 255. Examples for each environment are

shown in the bottom row of Figure 3.

Formally, the input value for the CNN model would be an image

obtained by transforming the whole dataset D using a function

𝑓𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (D) or 𝑓𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑 (D). The value to predict would be

ˆJRL (D′).

4.2 Experimental Results
In this section, we evaluate the CNNmodels in each environment to

validate them as heuristics for our GA. Additionally, we showcase

experiments where we compare the reduction benefits of using the

GA with the CNN models against using the complete datasets.

4.2.1 CNN models experiments. Usually, in RL a change in the tran-

sition function means that a new policy must be learned. However,

the spatial distribution of states will share characteristics in similar

tasks. Hence, if we can train the CNN models for some specific

transition functions, we would be able to transfer this knowledge

to different transition functions in the same environment.

Given this assumption, we create various datasets with different

configurations to modify these functions. Additionally, we modified

2
Note this is not possible in all environments.

419

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

(a) (b) (c)

(d) (e) (f)

(g)
Frozen-Lake

(h)
Mountain-Car

(i)
Acrobot

Figure 3: Representations of the Open AI’s environments
used in the paper. On the top row, is a snapshot of each
environment. On the middle row, is the state representa-
tion/abstraction of the corresponding environments. On the
bottom row, the rendered representation of the environ-
ments. Each column represents one domain: Frozen Lake,
Mountain Car, and Acrobot respectively.

the state space when possible (Frozen Lake) and the quality of the

datasets (Mountain Car and Acrobot) to prove the robustness of our

solution. In Frozen Lake, we create 23 maps, where 20 are of size

12x12 and the remaining with increasing sizes 24x24, 48x48 and

96x96. All maps are created by placing the start and goal positions

randomly and covering 20% of the map with holes. In this case, 10

of the 12x12 maps are used for training, 4 of them for validation and

the rest joined with the bigger maps for testing. In Mountain Car,

we create 4 configurations with different acceleration forces and

gather datasets with varying policy quality. In this case, the training

datasets were obtained with two specific values for the applied

force and two policy qualities and the test datasets comprise two

different applied forces and four policy qualities. Finally, in Acrobot

we create 4 setups with different torque and pendulum lengths and

obtain datasets following policies with different qualities. Training

datasets used a single torque and pendulum length configuration

for several policy qualities and the test set used the remaining

configurations. We follow a similar approach to the one explained

in Section 3.2 to generate the datasets from sub-optimal policies.

After obtaining the datasets, we generate the images following the

scheme in Figure 4. Images are generated using the GA that creates

a bunch of examples of subsets.

Given the characteristics of the reward of each environment,

the output of the CNN differs from one to another. In the case of

Frozen Lake and Mountain Car, where the result is a value of 0 (not

reaching the goal) or 1 (reaching the goal), the output is a value

between 0 and 1, considered as the confidence level of being a good

subset. In the case of Acrobot, the output of the CNN is a value

between −500 and 0 (the steps needed to surpass the mark). These

models are trained by receiving as input examples of images from

subsets of the original datasets. Figure 5 shows the results from the

CNN models using rendered (left column) and state (right column)

representations across different domains, which are summarized as

follows.

Frozen Lake. Both image representations of the environment use

the same CNN model architecture. After training the models, the

accuracy obtained for the scatter plotted representation is 99% and

for the rendered images 92%. This accuracy is obtained using the

threshold in the range [0, 1] that maximizes the Area Under the

Curve (AUC). As illustrated in Figures 5a and 5b, the representation

using a scatter plot of the states can discriminate between “good”

and “bad” datasets. However, with the rendered representation it

is more difficult to make this differentiation. After analyzing the

results, we found that the red pick around 0.0 confidence in Figure

5a corresponds to all the results for a specific map. This map has

the goal close to the start point and it may be more difficult for the

model to distinguish the existence of a path between the red and

green points.

Mountain Car. Upon completion of training, the predictor trained

with the images representing the states as points in two dimensions

achieved an accuracy of approximately 79% on the test set. Using

the rendered images the model barely surpasses the 50% accuracy.

Given the results provided in Figure 5d, the state representation can

accurately differentiate between cases. Additionally, “bad” cases

are better discriminated than “good” ones. As expected from the

low accuracy of the model, the rendered images (Figure 5c) are not

suitable to represent “good” and “bad” cases in this environment.

Acrobot. Following training, an L1 error, which measures the

average absolute differences between predicted and actual values,

of approximately 22 was attained when utilizing rendered images.

Conversely, an error of 25 was recorded when employing images of

an autoencoder-based dimensionality reduction. Given the reward

ranges from -500 to -70 these are good error values. In Figures 5e

and 5f we provide the predicted labels against real labels scatter

plots. Both representations distribute the results along the dashed

diagonal line that assumes the perfect model. However, when using

the autoencoder representation, the model demonstrates under-

performance in higher value ranges. The rendered image model is

capable of such distinction.

Already in Definition 3 we considered the hyperparameters and

type of algorithm in the RL process. Given the results of the predic-

tors, we can observe that the representation used is also a key factor

for each environment. In our results, the scatter plots representa-

tion is better for the bi-dimensional environments. Conversely, the

rendered images are more suitable for Acrobot.

These prediction models allow us to reduce the execution time of

GA from 30-40% in theworst cases (Frozen Lake due to its simplicity)

to 80-90% in the best scenarios (Acrobot due to the use of DQN as

the offline training algorithm) compared to those cases in which

420

GECCO ’25, July 14–18, 2025, Malaga, Spain Enrique Mateos-Melero, Miguel Iglesias Alcázar, Raquel Fuentetaja, and Fernando Fernández

Figure 4: Scheme used to reduce the datasets. In orange, we consider the environment configurations used to train the CNN
models. Labels for each image generated (square in pink) are obtained from Equation 1 given an RL training and evaluation
process for each individual of the genetic algorithm. In green, we consider the environment configurations and datasets used to
test our solution. The fitness function uses the trained CNNmodels. The output is a reduced dataset that maintains or improves
the learned policy.

the CNN where not used in the GA both in the training and test

sets.

4.2.2 GA experiments. Additionally, we compare the policies ob-

tained from using the GA approach with our heuristic to use the

complete dataset to perform the training process. We evaluate the

performance of the best individual (best-reduced dataset) obtained

when the ESP is solved by the GA using the CNN predictor, in com-

parison to the real value of the performance of the original dataset,

computed by Equation 2 and using the policy learned by the offline

RL algorithm. We use the same domains as before. Experiments are

divided into two groups, described below.

In the first group, we evaluate the generalization ability of the

method when datasets gather data from configurations with dif-

ferent transition functions and, additionally, in Frozen Lake, we

consider datasets with modified state space. Specifically, in Frozen

Lake, the 12x12 maps are joined as the modification of the transition

function, and bigger maps are presented separately. In Mountain

Car, we consider the different forces as the modification of the

transition function. In Acrobot, we consider different lengths of

the lower pendulum and the torque force applied to modify the

transition function. Frozen Lake is the only environment with state

space modifications because it is the only one with this possibility

(changing the map size).

In the second group, we evaluate the generalization ability of the

method when there are changes intrinsic to the RL training process

by using different policy qualities to gather the data. Specifically, we

include 3 policy values and a single epsilon value for both Mountain

Car and Acrobot. Frozen Lake is not included in this group due

to its learning simplicity and thus difficulty in obtaining different

policy expertise.

All experiments use𝜓 (D) = 0.8 × ˆJ (D | 𝜃) + 0.2 × 1

|D | as ESP

metric, where
ˆJ (D | 𝜃) is obtained by the trained CNN models

used in Section 4.2. The initial population for the GA is generated

randomly with 50% chance for each episode to appear in the given

subset.

All configurations were executed 5 times. Table 1 shows the

results for the first and second groups of experiments in terms

of the average and standard deviation of the performance metric

and the number of tuples used for both the complete dataset and

the resulting subset from the GA process, depending on the type

of images used for the CNNs. The results show that our method

generally maintains (Frozen Lake) or improves (Mountain Car and

Acrobot) the learned policy. This is not fulfilled in the rendered

version of bigger maps in Frozen Lake. Moreover, we can observe

between 70% to even 95% dataset size reduction in most cases.

In Figure 6, we present a comparative analysis of the performance

of datasets generated through the genetic algorithm in contrast

to random datasets of varying sizes. Note that we also include

the complete dataset in this comparison. Each figure in the plot

series corresponds to the training progression of the respective

reinforcement learning (RL) algorithm. While training, the policy

obtained at each interval was evaluated, with the x-axis denoting

the training time and the y-axis representing the reward achieved.

We executed each case 100 times and computed the mean value and

standard deviation. In the case of Mountain Car and Acrobot, we use

a moving average for visualization purposes. Results show that our

solution outperforms the random selection and the complete dataset

in the number of updates needed for the training to converge,

rewards obtained, or both.

421

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

Table 1: Results of generalization of the method for the first and second group of experiments, separated by a double line.
Column Original denotes the complete dataset. Columns States and Rendered refer to the type of images used for the CNNs
(state scatter plots and rendered environment images, respectively). Domains are represented by one letter followed by the type
of modification performed. Frozen Lake (F), Mountain Car (M), Acrobot (A). Modifications to transition function (P), state
space (X𝑆 where X is multiplying factor to the base 12x12), policy expertise (𝜋 ′) and epsilon (𝜖).

Obtained reward Number of tuples
Task Original States Rendered Original States Rendered

FP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 100% 8.25% 11.72%

F2𝑆 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 100% 10.52% 34.26%

F3𝑆 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 100% 9.71% 19.40%

F4𝑆 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 100% 14.61% 37.91%

MP 0.67 ± 0.50 0.80 ± 0.42 0.66 ± 0.50 100% 30.05% 38.58%

AP -341.92 ± 86.87 -157.73 ± 70.56 -183.99 ± 84.97 100% 6.65% 6.76%

M𝜋 ′ 0.50 ± 0.55 0.83 ± 0.41 0.83 ± 0.41 100% 33.32% 43.59%

M𝜖′ 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 100% 31.36% 42.89%

A𝜋 ′ -397.16 ± 85.58 -188.50 ± 38.94 -158.97 ± 59.65 100% 9.04% 3.53%

A𝜖 -439.87 ± 50.25 -381.59 ± 59.22 -163.82 ± 93.69 100% 9.16% 3.05%

5 Related work
In offline RL, data quality is an important factor. Data quality is

not considered in many of the offline RL algorithms available in

the literature diminishing their performance. We will divide this

section between approaches that estimate dataset performance and

dataset reduction. Additionally, we include a section that explores

the usage of GA in data-related problems.

5.1 Dataset performance estimation
There are different approaches to estimating the performance of

datasets in Offline RL. Some metrics have been developed to quan-

tify the data quality like Estimated Relative Return Improvement

(ERI) [22] or TQ and SACo [19]. However, these factors do not ac-

tually reflect the possible performance after a training process with

the dataset. The metrics cannot determine the quality of a dataset

since they are based on averaging the expected returns from the

episodes that constitute the dataset. Additionally, they do not take

into consideration the existence of datasets created from a mixture

of policies and still rely on the expectation formula (Equation 1).

Such considerations are reflected in algorithms like LBRAC-v

[29]. The algorithm assumes the datasets are generated from dif-

ferent behavior policies. With this assumption, it tries to learn a

latent variable model that is capable of grouping all the trajectories

in the dataset into their corresponding behavior policy. This latent

variable is used to solve the degeneration problem from the BRAC-v

[25] algorithm. However, it still does not estimate the performance

of a dataset as a whole.

An example of dataset estimation is DVORL [1]. This algorithm

has a sub-module that performs data valuation which consists of

estimating datum quality in overall performance [4, 28]. This is

performed on a subset of the dataset to make the best possible

selection for the target task. However, this algorithm assumes the

existence of a target dataset, which may not exist or be unknown.

The algorithm is unusable without the target dataset since it is used

for a KL divergence metric [9] during the learning process. We can

estimate without the need for an auxiliary target dataset.

5.2 Dataset reduction
Offline Imitation Learning algorithms are useful for learning from

demonstrations. Most of them are based on Behavioural Cloning

(BC) [2] which uses supervised learning techniques to learn. How-

ever, the main problem with this type of algorithm is that they

imitate equally data with expert and sub-optimal behavior. This

leads to bad performances. Hence there are various approaches to

reduce datasets to keep only the useful data for the training process.

The approaches to solving this issue are based on using discrim-

inators to distinguish between expert data and non-expert data. In

Discriminator-Weighted Offline Imitation Learning from Sub-optimal
Demonstrations [27] the idea is to build a discriminator on top of a

BC algorithm to weight the input data depending on its expertise.

They use a cycle to learn both the model and discriminator. COIL

[14] assumes that each trajectory has been collected by an inde-

pendent policy. It measures the KL divergence of each trajectory

to determine the similarity with the learned policy and filter the

dataset. Other examples like 2IWIL and IC-GAIL [26] based their

discrimination strategies on importance weighting or Generative

Adversarial Networks (GANs) [5] using GAIL [6] as their base al-

gorithm. Our approach creates a new “cleaned” dataset instead of

using the original one.

5.3 GAs for dataset management
Genetic algorithms (GAs) have been widely used for feature selec-

tion and dimensionality reduction in machine learning. By lever-

aging evolutionary optimization, GAs facilitate the selection of

optimal feature subsets, improving computational efficiency and

predictive performance in various models.

Raymer et al. [18] introduced a GA-based method that optimizes

feature weights and employs a masking vector for improved se-

lection, demonstrating effective dimensionality reduction while

preserving classification accuracy. Mohammed et al. [16] extended

this idea by integrating GAs with artificial neural networks (ANNs)

to enhance feature reduction in big data applications, showing im-

proved computational efficiency and classification performance.

422

GECCO ’25, July 14–18, 2025, Malaga, Spain Enrique Mateos-Melero, Miguel Iglesias Alcázar, Raquel Fuentetaja, and Fernando Fernández

(a) Frozen Lake Rendered (b) Frozen Lake Abstraction

(c) Mountain Car Rendered (d) Mountain Car Abstraction

(e) Acrobot Rendered (f) Acrobot Abstraction

Figure 5: Results from the CNN models using rendered (left
column) and state (right column) representations across dif-
ferent domains. Each row corresponds to a different domain:
Frozen Lake,MountainCar, andAcrobot. The plots for Frozen
Lake and Mountain Car show the distribution of confidence
provided by the model for “good” (red) and “bad” (blue)
datasets. The plots for Acrobot compare the true labels of the
test set instances with the predicted values, with the dashed
red line representing the ideal scenario.

Similarly, [20] applied GAs for data reduction and non-algebraic

feature construction, successfully minimizing dataset sizes while

retaining predictive power.

6 Conclusions
Our paper proposes an efficient method for reducing dataset size

in offline reinforcement learning while maintaining or improving

the resulting policy quality. We use a genetic algorithm to opti-

mize this process. Additionally, we present an efficient method for

estimating the performance of a dataset in Offline RL without a con-

ventional training process. We tackle different RL problems such

as continuous and high dimensional state spaces and delayed and

immediate reward functions. Hence, we have represented datasets

as images and used a convolutional neural network (CNN) as our

approximation function.

We evaluated our approach in three well-known RL domains,

Frozen Lake, Mountain Car, and Acrobot, achieving significant

dataset size reductions while keeping or enhancing policy quality

in different scenarios. We also found potential for reusing learned

models and efficiently estimating fitness functions using CNNs.

In the future, we plan to test our method in more complex envi-

ronments, continuous action spaces, and different dataset sizes to

better understand the method’s scalability. Adapting our method to

other representation forms is another possibility. From the GA point

of view, we plan to test our method on pure multiobjective settings

with dedicated algorithms. Additionally, exploring new RL applica-

tions could lead to innovative dataset-reduction techniques. This

research lays the foundation for refining and expanding efficient

dataset reduction methods in offline and batch RL.

Acknowledgments
This work was partially developed while Fernando Fernández was

a visiting researcher at the University of Texas at Austin founded

by the Universidad Carlos III de Madrid and Ministerio de Universi-

dades under the program "Estancias de personal docente y/o inves-

tigador senior en centros extranjeros" grant number PRX22/00198.

This work was partially funded by grant PID2021-127647NB-C21

from MICIU/AEI/10.13039/501100011033, by the ERDF “A way of

making Europe”, and by the Madrid Government under the Multian-

nual Agreement with UC3M in the line of Excellence of University

Professors (EPUC3M17) in the context of the V PRICIT (Regional

(a) Frozen Lake (b) Mountain Car

(c) Acrobot

Figure 6: Comparison of performance of the genetic algo-
rithm against random and full datasets for Frozen Lake,
Mountain Car, and Acrobot. “chromosome_obtained” stands
for the selection achieved using the GA, “same_selection”
stands for a random selection using the same number of
episodes as the solution from the GA and the percentages cor-
respond to a random selection of episodes from the dataset
corresponding to the given proportion.

423

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics GECCO ’25, July 14–18, 2025, Malaga, Spain

Programme of Research and Technological Innovation). We thank

Peter Stone for his insightful comments and ideas that helped us

during the process.

References
[1] Amir Abolfazli, Gregory Palmer, and Daniel Kudenko. 2022. Data Valuation for

Offline Reinforcement Learning. arXiv 2205.09550 (2022), 9 pages.

[2] Michael Bain and Claude Sammut. 1999. A Framework for Behavioural Cloning.

InMachine Intelligence 15, Intelligent Agents. Oxford University, Oxford, 103–129.
[3] Dor Bank, Noam Koenigstein, and Raja Giryes. 2023. Autoencoders. In Ma-

chine Learning for Data Science Handbook: Data Mining and Knowledge Discovery
Handbook. Springer International Publishing, 353–374.

[4] Amirata Ghorbani and Jame Zou. 2019. Data shapley: Equitable valuation of

data for machine learning. In Proceedings of the 36th International Conference on
Machine Learning. PMLR, 2242–2251.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversar-

ial Nets. In Advances in Neural Information Processing Systems. Proceedings of
the twenty-eighth Annual Conference on Neural Information Processing Systems
(NeurIPS 2014), Vol. 27. Curran Associates, 2672–2680.

[6] Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learn-

ing. In Advances in Neural Information Processing Systems. Proceedings of the
thirtieth Annual Conference on Neural Information Processing Systems (NeurIPS
2016), Vol. 29. Curran Associates, 4565–4573.

[7] John H. Holland. 1975. Adaptation in Natural and Artificial Systems. MIT Press.

[8] Varun Raj Kompella, Thomas Walsh, Samuel Barrett, Peter R. Wurman, and

Peter Stone. 2023. Event Tables for Efficient Experience Replay. Transactions on
Machine Learning Research (2023), 32 pages.

[9] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.

The Annals of Mathematical Statistics 22(1) (1951), 79–86.
[10] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conser-

vative Q-Learning for Offline Reinforcement Learning. In Advances in Neural
Information Processing Systems. Proceedings of the thirty-fourth Annual Confer-
ence on Neural Information Processing Systems (NeurIPS 2020), Vol. 33. Curran
Associates, 1179–1191.

[11] Sascha Lange, Thomas Gabel, and Martin Riedmiller. 2012. Batch reinforcement
learning. Springer. 45–73 pages.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521 (2015), 436–444.

[13] Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. 2020. Offline Reinforce-

ment Learning: Tutorial, Review, and Perspectives on Open Problems. ArXiv
2005.01643 (2020), 43 pages.

[14] Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao,

and Tie-Yan Liu. 2021. Curriculum Offline Imitating Learning. In Advances
in Neural Information Processing Systems. Proceedings of the thirty-fifth Annual
Conference on Neural Information Processing Systems (NeurIPS 2021). Curran
Associates, 1–12.

[15] Z. Michalewicz. 1996. Genetic algorithms + data structures = evolution programs
(3nd, extended ed.). Springer, New York, NY, USA.

[16] TareqAbedMohammed, ShaymaaAlhayali, Oguz Bayat, andOsmanNUçan. 2018.

Feature reduction based on hybrid efficient weighted gene genetic algorithms

with artificial neural network for machine learning problems in the big data.

Scientific Programming 2018, 1 (2018), 2691759.

[17] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2(11) (1901), 559–572.

[18] M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain. 2000. Dimen-

sionality reduction using genetic algorithms. IEEE Transactions on Evolutionary
Computation 4, 2 (2000), 164–171.

[19] Kajetan Schweighofer, Markus Hofmarcher, Marius-Constantin Dinu, Philipp

Renz, Angela Bitto-Nemling, Vihang Prakash Patil, and Sepp Hochreiter. 2021.

Understanding the Effects of Dataset Characteristics on Offline Reinforcement

Learning. In Deep RL Workshop NeurIPS 2021. 19 pages.
[20] Leila S. Shafti and Eduardo Pérez. 2008. Data Reduction by Genetic Algorithms

and Non-Algebraic Feature Construction: A Case Study. In 2008 Eighth Interna-
tional Conference on Hybrid Intelligent Systems. 573–578.

[21] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press.

[22] Phillip Swazinna, Steffen Udluft, and Thomas Runkler. 2021. Measuring Data

Quality for Dataset Selection in Offline Reinforcement Learning. In Proceedings of
the 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 1–8.

[23] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement

learning domains: A survey. Journal of Machine Learning Research 10, 56 (2009),

1633–1685.

[24] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605.

[25] Yifan Wu, George Tucker, and Ofir Nachum. 2019. Behavior Regularized Offline

Reinforcement Learning. arXiv 1911.11361 (2019), 25 pages.

[26] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and

Masashi Sugiyama. 2019. Imitation Learning from Imperfect Demonstration.

In Proceedings of the 36th International Conference on Machine Learning, Vol. 97.
PMLR, 6818–6827.

[27] Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. 2022. Discriminator-

Weighted Offline Imitation Learning from Suboptimal Demonstrations. In Pro-
ceedings of the 39th International Conference on Machine Learning, Vol. 162. PMLR,

24725–24742.

[28] Jinsung Yoon, Sercan Arik, and Tomas Pfister. 2020. Data valuation using rein-

forcement learning. In Proceedings of the 37th International Conference on Machine
Learning. PMLR, 10842–10851.

[29] Guoxi Zhang and Hisashi Kashima. 2023. Behavior estimation from multi-source

data for offline reinforcement learning. In Proceedings of the 37th AAAI Conference
on Artificial Intelligence. AAAI Press, 11201–11209.

[30] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. 2020. Sim-to-Real

Transfer in Deep Reinforcement Learning for Robotics: a Survey. In Proceedings
of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
737–744.

[31] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. 2020. Transfer Learning

in Deep Reinforcement Learning: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 45 (2020), 13344–13362.

424

	Abstract
	1 Introduction
	2 Preliminaries
	3 Episode Selection Problem
	3.1 Genetic Algorithm for Solving the Episode Selection Problem
	3.2 Running Example with Frozen Lake
	3.3 Results

	4 Image-based Heuristics
	4.1 Representing Datasets as Images
	4.2 Experimental Results

	5 Related work
	5.1 Dataset performance estimation
	5.2 Dataset reduction
	5.3 GAs for dataset management

	6 Conclusions
	Acknowledgments
	References

