Check for
Updates

Dataset Reduction for Offline Reinforcement Learning using
Genetic Algorithms with Image-Based Heuristics

Enrique Mateos-Melero
Universidad Carlos Il de Madrid
Leganés, Spain
enmateos@pa.uc3m.es

Raquel Fuentetaja
Universidad Carlos III de Madrid
Leganés, Spain
rfuentet@inf.uc3m.es

Abstract

In offline Reinforcement Learning (RL), the size and quality of the
training dataset play a crucial role in determining policy perfor-
mance. Large datasets can lead to excessive training times, while
low-quality data can result in sub-optimal policies, particularly for
deep learning-based RL frameworks. To address these challenges,
we propose a novel approach that leverages genetic algorithms for
efficient dataset reduction, paired with image-based learning using
Convolutional Neural Networks (CNNs) to reduce the evaluation
time of the fitness function. Specifically, our method predicts the
performance of policies (fitness) learned from offline RL datasets
(phenotype) and identifies optimized subsets that preserve or en-
hance policy quality. We evaluate our approach across three well-
established RL domains, demonstrating that it effectively reduces
dataset size while maintaining or improving policy performance.
Furthermore, we show the transferability of the learned models to
similar tasks, enabling efficient dataset optimization via transfer
learning.

CCS Concepts

« Computing methodologies — Machine learning; Genetic
algorithms; Markov decision processes; Neural networks.

Keywords

Offline Reinforcement Learning, Genetic algorithms, Dataset Qual-
ity, Learning Performance Prediction, Convolutional Neural Net-
works

ACM Reference Format:

Enrique Mateos-Melero, Miguel Iglesias Alcazar, Raquel Fuentetaja, and Fer-
nando Fernandez. 2025. Dataset Reduction for Offline Reinforcement Learn-
ing using Genetic Algorithms with Image-Based Heuristics. In Genetic and
Evolutionary Computation Conference (GECCO °25), July 14-18, 2025, Malaga,
Spain. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3712256.
3726364

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

GECCO ’25, July 14-18, 2025, Malaga, Spain

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1465-8/2025/07

https://doi.org/10.1145/3712256.3726364

416

Miguel Iglesias Alcazar
Universidad Carlos II de Madrid
Leganés, Spain
migigles@pa.uc3m.es

Fernando Fernandez
Universidad Carlos III de Madrid
Leganés, Spain
flernand@inf.uc3m.es

1 Introduction

In classical Reinforcement Learning (RL) methods, such as tabular
approaches [21], computational time was not a significant concern
as learning costs were typically measured based on the resources
required to gather training examples. However, recent research in
RL, such as off-line RL [13] or batch approaches in on-line RL [10],
which can be computationally intensive, has highlighted the need
to reduce learning time.

A fundamental approach to achieving this reduction is decreas-
ing the number of training instances, as computational time is
typically at least linearly related to this number [8]. However, for
a specific task with a training set of size M consisting of experi-
ence episodes and other RL parameters (e.g., representation model,
algorithm), selecting a smaller subset of experiences that still al-
lows for near-optimal policy learning is a complex problem. In this
paper, our focus is on providing an accurate, cost-efficient, and
transferable solution to this problem.

By “accurate”, we mean that the performance of the learned
policy with the reduced training set should be at least as good
as with the entire dataset. By “cost-effective”, we mean that the
computational cost of determining this subset and learning with it
should be lower than the cost of learning with the entire dataset.
By “transferable”, we mean that the solution learned to determine
the performance for a specific task can be applied to similar tasks,
increasing utility. Our approach addresses several questions sequen-
tially: a) Can we find a method to reduce a training set of size M to
a smaller one of size N, where N <« M, without sacrificing perfor-
mance? b) Can we do this efficiently? c) Can the models generated
by this method be reused in similar tasks?

To achieve this, we propose framing the reduction of the training
set as an optimization problem, where the objective is, given a set of
episodes and a learning framework (RL algorithm, parameters, etc.),
to select a subset of episodes that maximizes a specific metric. The
goal is to minimize the training set while retaining episodes that
enable accurate policy learning with the RL framework. Due to the
vast number of possible episode subsets (the power set of the set
of episodes), finding an optimal solution is infeasible. Instead, we
employ a genetic algorithm, where each individual represents a dif-
ferent subset of the training set. The fitness function is determined
by the accuracy of the policy learned from the corresponding subset
and is inversely proportional to its size, favoring more accurate
policies and smaller training sets.

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801
https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801
https://orcid.org/0000-0003-3801-6801
https://doi.org/10.1145/3712256.3726364
https://doi.org/10.1145/3712256.3726364
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3712256.3726364
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712256.3726364&domain=pdf&date_stamp=2025-07-13

GECCO ’25, July 14-18, 2025, Malaga, Spain

To address the computational cost issue, we introduce a heuris-
tic that reduces the overhead of computing the fitness function.
Instead of conducting RL processes, we learn a predictive model
for estimating the policy’s performance derived from a training set.
In offline RL, where dataset quality is crucial for learning an effec-
tive policy, we leverage Convolutional Neural Networks (CNNs)
[12] to efficiently evaluate datasets and forecast their impact on
policy learning. Our approach enables rapid estimation of dataset
performance, which is critical for applications like transfer learning
[23, 31], curriculum learning [14], Sim2Real [30], and batch RL [11].

Furthermore, we assess the transferability of predictive models
by applying them to new scenarios with modified state space sizes
or state transition functions. The results demonstrate promising
capabilities for reusing models in similar tasks, opening up oppor-
tunities for applications in various RL contexts. Additionally, we
explore the use of genetic algorithms applying our predictive model
to enhance dataset quality, providing a method to create efficient
datasets for RL training.

The structure of this paper is as follows: Section 2 provides back-
ground on RL, Section 3 formalizes the Episode Selection Problem
as an optimization task and describes our genetic-based solution,
Section 4 describes how we efficiently estimate the fitness function
with Deep Learning and its image-based solution, and the results in
three different environments. Section 5 reviews related work, and
Section 6 offers conclusions and directions for future work.

2 Preliminaries

Reinforcement Learning (RL) addresses the problem of learning to
control a dynamic system defined by a Markov Decision Process

(MDP) [21]. An MDP can be defined asa tuple M = (S, A,R, P,y, I, B),

where S is a set of states; A is a set of actions; R is a reward func-
tionR: AXS — Pr[R],P : SXAXS — Pr[S] is a transition
distribution function; y € [0, 1) is a discount factor; 7 : Pr[S] is
an initial state distribution; and § : S — {0, 1} is an episode ter-
mination function. At time step ¢, the state of the environment is
s and the agent, using its behavior policy 7 : S — Pr[A], selects
an action a; that when executed in the environment, produces a
reward r; ~ R(s,a) and leads to a new state s;+1 ~ P(s,a). The
sequence (S, ar, 1, St+1) is called an experience. A sequence of ex-
periences is an episode. When f(s’) = 1 or a horizon T is reached
the episode ends. The sequence of state-action transitions in an
episode is a trajectory, T = (so, ap, 1, a1, - . .), which can be derived
directly from the episodes.

Given a policy r, the long-term discounted return J (i), defined
by Equation 1, is its expected cumulative discounted reward. An op-
timal policy * is a policy maximizing J (r): 7* = arg max J ().
The objective of an RL agent is to learn an optimal policy.

00

1)

t
Y
=0

T (1) = Esyn 1,501~ (51,7 (51))re~R(s0,7(51)) [

In online RL, the agent learns through trial and error by inter-
acting with the environment [21]. However, in offline RL, which
is a fully data-driven method, the agent is not allowed to interact
with the environment during learning [11, 13]. Instead, it receives
a dataset Depy consisting on set of M episodes sampled from the
environment, Deny = {e;}i=1,. M. Since the training data is given,

417

Enrique Mateos-Melero, Miguel Iglesias Alcazar, Raquel Fuentetaja, and Fernando Fernandez

and it is usually finite, the agent can not expect to come up with an
optimal policy. Then, the objective of the agent is to derive the best
possible policy from the dataset for the given environment [11].

3 Episode Selection Problem

In offline RL, the input dataset, denoted as Depy, can often be
overwhelmingly large, making the execution time of the learning
algorithm impractical. Additionally, the dataset’s source may be
a mixture of “good” and “bad” policies. Therefore, a fundamental
question arises: Can we significantly reduce the size of Dy, while
still enabling the learning algorithm to produce a high-quality
policy? This question essentially frames the problem as a multi-
objective optimization task. On one hand, we aim to minimize
the size of the resulting dataset and, on the other hand, we seek
to maximize the quality of the policy learned from it. However,
it is possible to simplify this into a single-objective optimization
problem by combining both objectives into a single metric. Let us
define the Episode Selection Problem (ESP) metric, denoted as ¢,
as follows:

DEFINITION 1 (ESP METRIC ¥/). Let D be a set of episodes, 6 be
a representation of the RL framework (algorithms, parameters, ...)
and let J (D|6) represent an estimate of the performance of the best
possible policy wqy that an RL agent can learn from D given 0, such
that J(D|0) ~ J(np|6). Then, the ESP metric)y : D — R is
defined as:

¥(DI6) = (T (DI6),1DI)

where f is a weighted sum ofj(l)|9) and oI

Note that we always maintain the dependency with the RL frame-
work, 6. It is easy to understand that, if this framework changes (for
instance, the generalization method), the gain obtained by learning
with the same dataset may vary. For simplicity of the notation, we
eliminate this dependency in the notation in the rest of the paper.
Therefore, with this metric in place, we can formally define the
Episode Selection Problem (ESP) as follows:

DEFINITION 2 (EPISODE SELECTION PROBLEM, ESP(D, ¢)). Given
a set of episodes D and a metric , find a reduced subset D* C D
that maximizes y/:

D* = argmaxy (D)
D'CD

An optimal ESP could theoretically be solved by a brute-force
approach, by generating all possible subsets of the input dataset and
evaluating them using the metric ¢ under 6. However, given the
potentially enormous size of Depy and the exponential number of
subsets (2! Penol), such a brute-force approach is not feasible. Instead,
we propose a method to find a suboptimal solution using stochastic
search. Specifically, we employ a genetic algorithm [7, 15], where
each individual in the population represents a different subset of
the training set, and the fitness function is defined in terms of the
ESP metric, ¢.

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics

3.1 Genetic Algorithm for Solving the Episode
Selection Problem

To solve an episode selection problem, ESP(D, /), with a genetic
algorithm (GA) we need to represent the reduced datasets as indi-
viduals of the population and define the fitness function.

Each chromosome is encoded as a string of binary values repre-
senting which episodes in the input dataset D are selected. Each
individual thus represents a reduced dataset D’ C D containing the
selected episodes. The length of the string is the number of episodes
in D, |D|. Each gene of the chromosome represents the presence of
the corresponding episode in D’. Formally, let D = {e1, ea,...,ep}
be the input dataset, where e; is the i-th episode in D and |D| = M.
Let X be the space of all possible individuals. Then, every x € X
is defined as x = x1,x2,...,xp, where x; is the i-th gene of the
individual and x; € {0, 1}. The mapping function from the genotype
to the phenotype is p : X — 22 so that given an individual x € X,
the corresponding reduced dataset is p(x) = {e; € D | x; = 1}.

The fitness of each x € X is computed using the ESP metric ¢
(Definition 2), just by applying ¢ to p(x). Thus, the fitness function,
¢ : X — R, is defined as ¢(x) = ¥(p(x)). However, we need to
define a way to estimate the performance of the best policy that
can be learned by an RL agent in a specific RL framework 6 for
each subset. A direct approach to obtain that estimate is to perform
the RL process to learn a policy ngy from D’, and then evaluate
that policy through executions in the environment. We define the
estimate of the performance for D’ obtained by RL as the average
discounted return obtained in those episodes:

te
|z;'| Z Z V'res

ec D’ t=0

Jri(D') = @

where . and re; represent the last time step of episode e € D’ and
the reward obtained at time step ¢ in that episode, respectively.

3.2 Running Example with Frozen Lake

As a running example to show the ability of the GA to reduce the
size of the dataset, we utilize the Frozen Lake environment. This
is a grid-like environment from the Toy Text section of OpenAI’s
Gymnasium'. The goal is to reach the treasure from the starting
position. It is a discrete, bi-dimensional environment with a delayed
reward.

Our running example, uses a 12x12 grid map (see Figure 1),
with initial and goal positions randomly placed within the grid.
Additionally, approximately 20% of the grid’s surface is randomly
populated with holes.

The input dataset, denoted as Depy, is generated through an on-
line RL process in the new environment using the online Q-learning
algorithm [21] with an e-greedy approach. Dy, is constructed by
running the sub-optimal model obtained during online training 100
times. Thus, |Depy| = 100. We employ an offline tabular Q-learning
algorithm as our fixed RL agent for evaluating dataset performance
using Equation 2. After each learning process, we evaluate the re-
sulting policy by running it 10 times, starting from a fixed initial

!https://gymnasium.farama.org/

418

GECCO ’25, July 14-18, 2025, Malaga, Spain

> & V=)
4 U
Q o

(2§ o >)
@ @ @ E;:s,a,1,8,a,1,8, a..
@ @ Ey:s,a,rs, 4,18, a..
e @ @] | Eyis,a, 5,468, a..
@ o Ess,a,1,5 9,15, a...
e : = @ ,E”: s,a,1,5,a,r,5s, a..

e o &

Suboptimal controller

Figure 1: Example of dataset gathering,.

state, and computing the average undiscounted return. This ap-
proach simplifies the metric, ensuring it yields binary values (0 or
1) for deterministic environments.

From the GA perspective, we use /(D’) = 0.8 x J (D’ | 0) +
0.2 % |zl)—,| as ESP metric, where Jgy (D’) is the evaluation value
obtained for D’ by the Q-learning algorithm. The genetic algorithm
runs for 70 generations with a population size of 50 randomly sam-
pled individuals containing approximately 50% of the total episodes.
The selection process is performed by tournament selection with a
tournament size of 5. Mutation switches gene values with a proba-
bility of |_Zl)| and the crossover is performed gene-wise by selecting
the gene from one of two predecessors.

3.3 Results

Figure 2 illustrates the evolutionary trends (evolution of the policy
and evolution of the number of selected episodes) resulting from five
executions of the genetic algorithm. Notably, the dataset generated
by the genetic algorithm consistently retains approximately 10-20%
of the original dataset’s episode count, all while preserving the
optimal policy.

1025 60 —
avg_min_episodes

avg_mea
1.000 vg_mean_episodes

0975

0.950

ior policy

2 0.925

Behavi
Number of episodes used

0.900

0875

—— avg_max_policy 10

0.850 avg_mean_policy

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Generation

Generation

Figure 2: RL genetic algorithm results. On the left is the pol-
icy evolution and on the right is the number of episodes
evolution. The orange lines represent the population’s av-
erage values and the blue lines the best individual of the
population.

4 Image-based Heuristics

It is important to note that using the previous scheme each time
the fitness function is computed we need to compute Jrr(D’)
and subsequently learn 74, under the framework 6. Then, the

GECCO ’25, July 14-18, 2025, Malaga, Spain

described method is not useful when it is necessary to estimate the
performance of a dataset quickly. It would be preferable to have
a predictive model that allows obtaining a rapid estimate directly
from the entire dataset at once. We define formally the problem of
finding this model as the Performance Prediction Problem (P3).

DEFINITION 3 (PERFORMANCE PREDICTION PROBLEM (P3)). Let
D be a set of episodes and 6 be an RL framework (algorithm, pa-
rameters, etc.). The P3 consists of finding a function Ju:D —R
that approximates the return that would be obtained with the best
policy, wp, that can be learned from D by an RL agent given 0:
Im(D|0) ~ I (np | 0).

Given Definition 3, we need to obtain a function that can ap-
proximate the return obtained with the best policy. This kind of
function does not exist or it can not be computed mathematically
to do it quickly. Thus we propose to use a neural network (NN)
model as our function approximator.

In most cases, the datasets are composed of numerical values.
The representation of states of the environment is a set of tuples
with a numerical value for each feature (like position x and y). To
prepare datasets for input into predictive models, a suitable repre-
sentation is essential. If we use the basic numerical representation
we would need to consider each episode E in the dataset with its
corresponding experience tuples T, and the state S usually has more
than one dimension. Then, the input data into the model would
correspond to E X T X S features which is impractical in most cases.
Thus, we adopt a novel approach by representing entire datasets as
images, tailored to the specific domain characteristics from which
the dataset originates.

Representing datasets as images arises from the potential of
visualizing the entire dataset in a single image. In addition, we con-
sider the significance of spatial information in determining dataset
quality. Deep neural networks, particularly convolutional neural
networks (CNNs), stand to benefit from this data format, leveraging
their ability to extract features from spatial representations.

4.1 Representing Datasets as Images

Representing datasets as images depends on the state dimension-
ality or the environment dynamics. Since the representation of
datasets as images must be adapted to each domain, it is difficult
to define a general method to define the images. Then, we propose
different alternatives. We study their applicability by selecting three
domains that reflect these characteristics: Frozen Lake, Mountain
Car and Acrobot. These domains were selected to cover a range of
RL environment characteristics, including state space (discrete or
continuous), the number of state space dimensions, and the type of
reward (delayed or instant).

Mountain Car is a classic control problem also from OpenAI’s
Gymnasium. The goal is to reach the top of the hill using momen-
tum. It is a continuous, bi-dimensional environment with a delayed
reward. Originally, Gymnasium’s implementation featured an in-
stant reward, but it was modified to match the characteristics of
Frozen Lake, with a final goal to achieve. Acrobot is another classic
control problem. It consists of two pendulums aiming to surpass a
given height. This domain has a continuous, 6-dimensional state
space with instant reward. Snapshots from these environments are
shown in the top row of Figure 3.

419

Enrique Mateos-Melero, Miguel Iglesias Alcazar, Raquel Fuentetaja, and Fernando Fernandez

Our image representation focuses solely on the states within the
datasets. While actions could also be included, we opt to omit them
from the images. This decision stems from the observation that ac-
tions can often be interpreted based solely on state distribution, and
integrating them into images may not always be straightforward.
Additionally, our experimental results demonstrate that utilizing
only state information yields sufficiently accurate results. We pro-
pose two different ways of representing datasets as images: state
(or state abstractions) scatter plots and rendered images.

State (Abstractions) Scatter Plots. The idea is to use a straightfor-
ward approach by creating scatter plots of all states, providing a
visualization of the spatial distribution. For bi-dimensional state
spaces, this method captures the bi-dimensional structure of the en-
vironment and provides additional contextual information. Points
represent the states, with the start position indicated by a red point
and the goal position by a green point or area. In high-dimensional
state spaces, generating those scatter plots is unfeasible. One solu-
tion is to employ dimensionality reduction techniques such as Prin-
cipal Component Analysis (PCA) [17], t-SNE [24] and autoencoders
[3] to transform states into two-dimensional spaces for visualiza-
tion. After testing with the three approximations, we decided to use
autoencoders since the others obtained worse results. Then we rep-
resented the bi-dimensional abstraction of the original states with
a scatter plot using the latent representation of the autoencoders.
The middle row of Figure 3 shows examples of each environment
using this representation.

Rendered Images. The idea is to use rendered versions of the en-
vironments.? The first step is gathering the frames of each state rep-
resented in the dataset. The images are then converted to grayscale
and thresholded to separate the background (black) from the envi-
ronment objects (white). This step reduces the number of channels
that feed CNN and captures the motion in the environment. Next,
we sum all the pixel values from the dataset frames and normalize
the result between 0 and 255. Examples for each environment are
shown in the bottom row of Figure 3.

Formally, the input value for the CNN model would be an image
obtained by transforming the whole dataset D using a function
Sabstraction(D) Or frendered (D). The value to predict would be

JrL(D").

4.2 Experimental Results

In this section, we evaluate the CNN models in each environment to
validate them as heuristics for our GA. Additionally, we showcase
experiments where we compare the reduction benefits of using the
GA with the CNN models against using the complete datasets.

4.2.1 CNN models experiments. Usually, in RL a change in the tran-
sition function means that a new policy must be learned. However,
the spatial distribution of states will share characteristics in similar
tasks. Hence, if we can train the CNN models for some specific
transition functions, we would be able to transfer this knowledge
to different transition functions in the same environment.

Given this assumption, we create various datasets with different
configurations to modify these functions. Additionally, we modified

Note this is not possible in all environments.

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics

©

(® (h)

Frozen-Lake Mountain-Car

@
Acrobot

Figure 3: Representations of the Open AI’s environments
used in the paper. On the top row, is a snapshot of each
environment. On the middle row, is the state representa-
tion/abstraction of the corresponding environments. On the
bottom row, the rendered representation of the environ-
ments. Each column represents one domain: Frozen Lake,
Mountain Car, and Acrobot respectively.

the state space when possible (Frozen Lake) and the quality of the
datasets (Mountain Car and Acrobot) to prove the robustness of our
solution. In Frozen Lake, we create 23 maps, where 20 are of size
12x12 and the remaining with increasing sizes 24x24, 48x48 and
96x96. All maps are created by placing the start and goal positions
randomly and covering 20% of the map with holes. In this case, 10
of the 12x12 maps are used for training, 4 of them for validation and
the rest joined with the bigger maps for testing. In Mountain Car,
we create 4 configurations with different acceleration forces and
gather datasets with varying policy quality. In this case, the training
datasets were obtained with two specific values for the applied
force and two policy qualities and the test datasets comprise two
different applied forces and four policy qualities. Finally, in Acrobot
we create 4 setups with different torque and pendulum lengths and
obtain datasets following policies with different qualities. Training
datasets used a single torque and pendulum length configuration
for several policy qualities and the test set used the remaining
configurations. We follow a similar approach to the one explained
in Section 3.2 to generate the datasets from sub-optimal policies.
After obtaining the datasets, we generate the images following the
scheme in Figure 4. Images are generated using the GA that creates
a bunch of examples of subsets.

Given the characteristics of the reward of each environment,
the output of the CNN differs from one to another. In the case of

420

GECCO ’25, July 14-18, 2025, Malaga, Spain

Frozen Lake and Mountain Car, where the result is a value of 0 (not
reaching the goal) or 1 (reaching the goal), the output is a value
between 0 and 1, considered as the confidence level of being a good
subset. In the case of Acrobot, the output of the CNN is a value
between —500 and 0 (the steps needed to surpass the mark). These
models are trained by receiving as input examples of images from
subsets of the original datasets. Figure 5 shows the results from the
CNN models using rendered (left column) and state (right column)
representations across different domains, which are summarized as
follows.

Frozen Lake. Both image representations of the environment use
the same CNN model architecture. After training the models, the
accuracy obtained for the scatter plotted representation is 99% and
for the rendered images 92%. This accuracy is obtained using the
threshold in the range [0, 1] that maximizes the Area Under the
Curve (AUC). As illustrated in Figures 5a and 5b, the representation
using a scatter plot of the states can discriminate between “good”
and “bad” datasets. However, with the rendered representation it
is more difficult to make this differentiation. After analyzing the
results, we found that the red pick around 0.0 confidence in Figure
5a corresponds to all the results for a specific map. This map has
the goal close to the start point and it may be more difficult for the
model to distinguish the existence of a path between the red and
green points.

Mountain Car. Upon completion of training, the predictor trained
with the images representing the states as points in two dimensions
achieved an accuracy of approximately 79% on the test set. Using
the rendered images the model barely surpasses the 50% accuracy.
Given the results provided in Figure 5d, the state representation can
accurately differentiate between cases. Additionally, “bad” cases
are better discriminated than “good” ones. As expected from the
low accuracy of the model, the rendered images (Figure 5c) are not
suitable to represent “good” and “bad” cases in this environment.

Acrobot. Following training, an L1 error, which measures the
average absolute differences between predicted and actual values,
of approximately 22 was attained when utilizing rendered images.
Conversely, an error of 25 was recorded when employing images of
an autoencoder-based dimensionality reduction. Given the reward
ranges from -500 to -70 these are good error values. In Figures 5e
and 5f we provide the predicted labels against real labels scatter
plots. Both representations distribute the results along the dashed
diagonal line that assumes the perfect model. However, when using
the autoencoder representation, the model demonstrates under-
performance in higher value ranges. The rendered image model is
capable of such distinction.

Already in Definition 3 we considered the hyperparameters and
type of algorithm in the RL process. Given the results of the predic-
tors, we can observe that the representation used is also a key factor
for each environment. In our results, the scatter plots representa-
tion is better for the bi-dimensional environments. Conversely, the
rendered images are more suitable for Acrobot.

These prediction models allow us to reduce the execution time of
GA from 30-40% in the worst cases (Frozen Lake due to its simplicity)
to 80-90% in the best scenarios (Acrobot due to the use of DQN as
the offline training algorithm) compared to those cases in which

GECCO ’25, July 14-18, 2025, Malaga, Spain

Genetic algorithm
with RL agent

1..N Tasks of an
environment

Derw

Enrique Mateos-Melero, Miguel Iglesias Alcazar, Raquel Fuentetaja, and Fernando Fernandez

CNN model per
environment

Image Generation

100101...111010

Sub-optimal {eidi=1,.v
controller i.e.

m*ET

1..N Tasks of an
environment

-DETLTJ
{eii=1,.v

Sub-optimal
controller i.e.
w* Tt

1D

010111...100100

100101...111010 ©(D,6)

Diny
A{edi=1,.uM KN

010111...100100 [(p ()

Figure 4: Scheme used to reduce the datasets. In orange, we consider the environment configurations used to train the CNN
models. Labels for each image generated (square in pink) are obtained from Equation 1 given an RL training and evaluation
process for each individual of the genetic algorithm. In green, we consider the environment configurations and datasets used to
test our solution. The fitness function uses the trained CNN models. The output is a reduced dataset that maintains or improves

the learned policy.

the CNN where not used in the GA both in the training and test
sets.

4.2.2 GA experiments. Additionally, we compare the policies ob-
tained from using the GA approach with our heuristic to use the
complete dataset to perform the training process. We evaluate the
performance of the best individual (best-reduced dataset) obtained
when the ESP is solved by the GA using the CNN predictor, in com-
parison to the real value of the performance of the original dataset,
computed by Equation 2 and using the policy learned by the offline
RL algorithm. We use the same domains as before. Experiments are
divided into two groups, described below.

In the first group, we evaluate the generalization ability of the
method when datasets gather data from configurations with dif-
ferent transition functions and, additionally, in Frozen Lake, we
consider datasets with modified state space. Specifically, in Frozen
Lake, the 12x12 maps are joined as the modification of the transition
function, and bigger maps are presented separately. In Mountain
Car, we consider the different forces as the modification of the
transition function. In Acrobot, we consider different lengths of
the lower pendulum and the torque force applied to modify the
transition function. Frozen Lake is the only environment with state
space modifications because it is the only one with this possibility
(changing the map size).

In the second group, we evaluate the generalization ability of the
method when there are changes intrinsic to the RL training process
by using different policy qualities to gather the data. Specifically, we
include 3 policy values and a single epsilon value for both Mountain
Car and Acrobot. Frozen Lake is not included in this group due
to its learning simplicity and thus difficulty in obtaining different
policy expertise.

All experiments use /(D) = 0.8 X J(D]0)+0.2x ﬁ as ESP

metric, where J (D | 0) is obtained by the trained CNN models
used in Section 4.2. The initial population for the GA is generated
randomly with 50% chance for each episode to appear in the given
subset.

All configurations were executed 5 times. Table 1 shows the
results for the first and second groups of experiments in terms
of the average and standard deviation of the performance metric
and the number of tuples used for both the complete dataset and
the resulting subset from the GA process, depending on the type
of images used for the CNNs. The results show that our method
generally maintains (Frozen Lake) or improves (Mountain Car and
Acrobot) the learned policy. This is not fulfilled in the rendered
version of bigger maps in Frozen Lake. Moreover, we can observe
between 70% to even 95% dataset size reduction in most cases.

In Figure 6, we present a comparative analysis of the performance
of datasets generated through the genetic algorithm in contrast
to random datasets of varying sizes. Note that we also include
the complete dataset in this comparison. Each figure in the plot
series corresponds to the training progression of the respective
reinforcement learning (RL) algorithm. While training, the policy
obtained at each interval was evaluated, with the x-axis denoting
the training time and the y-axis representing the reward achieved.
We executed each case 100 times and computed the mean value and
standard deviation. In the case of Mountain Car and Acrobot, we use
a moving average for visualization purposes. Results show that our
solution outperforms the random selection and the complete dataset
in the number of updates needed for the training to converge,
rewards obtained, or both.

421

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics

GECCO ’25, July 14-18, 2025, Malaga, Spain

Table 1: Results of generalization of the method for the first and second group of experiments, separated by a double line.
Column Original denotes the complete dataset. Columns States and Rendered refer to the type of images used for the CNNs
(state scatter plots and rendered environment images, respectively). Domains are represented by one letter followed by the type
of modification performed. Frozen Lake (F), Mountain Car (M), Acrobot (A). Modifications to transition function (?), state
space (XS where X is multiplying factor to the base 12x12), policy expertise (7’) and epsilon (¢).

Obtained reward Number of tuples
Task Original States Rendered Original ~ States Rendered
FP 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 100% 8.25% 11.72%
F2§ 1.00 £ 0.00 1.00 £ 0.00 0.00 + 0.00 100% 10.52% 34.26%
F3S 1.00 = 0.00 1.00 £ 0.00 0.00 = 0.00 100% 9.71% 19.40%
F4S 1.00 £ 0.00 1.00 £ 0.00 0.00 = 0.00 100% 14.61% 37.91%
MP 0.67 + 0.50 0.80 + 0.42 0.66 + 0.50 100% 30.05% 38.58%
AP -341.92 £ 86.87 -157.73 £70.56 -183.99 + 84.97 100% 6.65% 6.76%
Mr’ 0.50 +0.55 0.83 + 0.41 0.83 + 0.41 100% 33.32% 43.59%
Me’ 1.00 + 0.00 0.00 = 0.00 0.00 = 0.00 100% 31.36% 42.89%
Ar’ -397.16 +£ 85.58 -188.50 +£38.94 -158.97 £+ 59.65 100% 9.04% 3.53%
Ae -439.87 £50.25 -381.59 +£59.22 -163.82 + 93.69 100% 9.16% 3.05%

5 Related work

In offline RL, data quality is an important factor. Data quality is
not considered in many of the offline RL algorithms available in
the literature diminishing their performance. We will divide this
section between approaches that estimate dataset performance and
dataset reduction. Additionally, we include a section that explores
the usage of GA in data-related problems.

5.1 Dataset performance estimation

There are different approaches to estimating the performance of
datasets in Offline RL. Some metrics have been developed to quan-
tify the data quality like Estimated Relative Return Improvement
(ERI) [22] or TQ and SACo [19]. However, these factors do not ac-
tually reflect the possible performance after a training process with
the dataset. The metrics cannot determine the quality of a dataset
since they are based on averaging the expected returns from the
episodes that constitute the dataset. Additionally, they do not take
into consideration the existence of datasets created from a mixture
of policies and still rely on the expectation formula (Equation 1).

Such considerations are reflected in algorithms like LBRAC-v
[29]. The algorithm assumes the datasets are generated from dif-
ferent behavior policies. With this assumption, it tries to learn a
latent variable model that is capable of grouping all the trajectories
in the dataset into their corresponding behavior policy. This latent
variable is used to solve the degeneration problem from the BRAC-v
[25] algorithm. However, it still does not estimate the performance
of a dataset as a whole.

An example of dataset estimation is DVORL [1]. This algorithm
has a sub-module that performs data valuation which consists of
estimating datum quality in overall performance [4, 28]. This is
performed on a subset of the dataset to make the best possible
selection for the target task. However, this algorithm assumes the
existence of a target dataset, which may not exist or be unknown.
The algorithm is unusable without the target dataset since it is used
for a KL divergence metric [9] during the learning process. We can
estimate without the need for an auxiliary target dataset.

422

5.2 Dataset reduction

Offline Imitation Learning algorithms are useful for learning from
demonstrations. Most of them are based on Behavioural Cloning
(BC) [2] which uses supervised learning techniques to learn. How-
ever, the main problem with this type of algorithm is that they
imitate equally data with expert and sub-optimal behavior. This
leads to bad performances. Hence there are various approaches to
reduce datasets to keep only the useful data for the training process.

The approaches to solving this issue are based on using discrim-
inators to distinguish between expert data and non-expert data. In
Discriminator-Weighted Offline Imitation Learning from Sub-optimal
Demonstrations [27] the idea is to build a discriminator on top of a
BC algorithm to weight the input data depending on its expertise.
They use a cycle to learn both the model and discriminator. COIL
[14] assumes that each trajectory has been collected by an inde-
pendent policy. It measures the KL divergence of each trajectory
to determine the similarity with the learned policy and filter the
dataset. Other examples like 2IWIL and IC-GAIL [26] based their
discrimination strategies on importance weighting or Generative
Adversarial Networks (GANs) [5] using GAIL [6] as their base al-
gorithm. Our approach creates a new “cleaned” dataset instead of
using the original one.

5.3 GAs for dataset management

Genetic algorithms (GAs) have been widely used for feature selec-
tion and dimensionality reduction in machine learning. By lever-
aging evolutionary optimization, GAs facilitate the selection of
optimal feature subsets, improving computational efficiency and
predictive performance in various models.

Raymer et al. [18] introduced a GA-based method that optimizes
feature weights and employs a masking vector for improved se-
lection, demonstrating effective dimensionality reduction while
preserving classification accuracy. Mohammed et al. [16] extended
this idea by integrating GAs with artificial neural networks (ANNs)
to enhance feature reduction in big data applications, showing im-
proved computational efficiency and classification performance.

GECCO ’25, July 14-18, 2025, Malaga, Spain

1200
Class 0

Class 1

w
S
s

1000

N
o
S

N

o

3
@
3
3

Frequency
i
o}
3
Frequency
o
3
S

400

,_.
o
3

w
S
N
5
3

Class 0
Class 1

o
o

7—0.2 0.0 0.2 0.4 0.6 0.8 1.0

Predicted Probability

(a) Frozen Lake Rendered

0.0 0.2 0.4 0.6

Predicted Probability

(b) Frozen Lake Abstraction

0.8 1.0

3500
Class 0
Class 1

Class 0
Class 1

@
S
3

3000

~
=]
3

2500

v o
o o
s 3

2 2000

&
=
3

£ 1500

Frequency

w
<3
3

1000
200

100

0.0 0.2 0.4 0.

6 08
Predicted Probability

1.0 0.0 02 0.8 1.0

04 06
Predicted Probability

(c) Mountain Car Rendered (d) Mountain Car Abstraction

-100/ Actual vs. Predicted

-~ Perfect prediction

Actual vs. Predicted
Perfect prediction

-1501

|
N
5
3

-2001

|
N
o
3

|
w
8
3

Predicted Values
Predicted Values
o
5
8

!
w
&
S

[
PO
& &
s 8

-500
—500 —450 -400 —350 —300 —250 —200 -150 —100
Real Values

—450 -400 —350 -300 —250 —200 —150 —100
Real Values

(e) Acrobot Rendered (f) Acrobot Abstraction
Figure 5: Results from the CNN models using rendered (left
column) and state (right column) representations across dif-
ferent domains. Each row corresponds to a different domain:
Frozen Lake, Mountain Car, and Acrobot. The plots for Frozen
Lake and Mountain Car show the distribution of confidence
provided by the model for “good” (red) and “bad” (blue)
datasets. The plots for Acrobot compare the true labels of the
test set instances with the predicted values, with the dashed
red line representing the ideal scenario.

Similarly, [20] applied GAs for data reduction and non-algebraic
feature construction, successfully minimizing dataset sizes while
retaining predictive power.

6 Conclusions

Our paper proposes an efficient method for reducing dataset size
in offline reinforcement learning while maintaining or improving
the resulting policy quality. We use a genetic algorithm to opti-
mize this process. Additionally, we present an efficient method for
estimating the performance of a dataset in Offline RL without a con-
ventional training process. We tackle different RL problems such
as continuous and high dimensional state spaces and delayed and
immediate reward functions. Hence, we have represented datasets
as images and used a convolutional neural network (CNN) as our
approximation function.

423

Enrique Mateos-Melero, Miguel Iglesias Alcazar, Raquel Fuentetaja, and Fernando Fernandez

We evaluated our approach in three well-known RL domains,
Frozen Lake, Mountain Car, and Acrobot, achieving significant
dataset size reductions while keeping or enhancing policy quality
in different scenarios. We also found potential for reusing learned
models and efficiently estimating fitness functions using CNNs.

In the future, we plan to test our method in more complex envi-
ronments, continuous action spaces, and different dataset sizes to
better understand the method’s scalability. Adapting our method to
other representation forms is another possibility. From the GA point
of view, we plan to test our method on pure multiobjective settings
with dedicated algorithms. Additionally, exploring new RL applica-
tions could lead to innovative dataset-reduction techniques. This
research lays the foundation for refining and expanding efficient
dataset reduction methods in offline and batch RL.

Acknowledgments

This work was partially developed while Fernando Fernandez was
a visiting researcher at the University of Texas at Austin founded
by the Universidad Carlos IIl de Madrid and Ministerio de Universi-
dades under the program "Estancias de personal docente y/o inves-
tigador senior en centros extranjeros" grant number PRX22/00198.
This work was partially funded by grant PID2021-127647NB-C21
from MICIU/AEI/10.13039/501100011033, by the ERDF “A way of
making Europe”, and by the Madrid Government under the Multian-
nual Agreement with UC3M in the line of Excellence of University
Professors (EPUC3M17) in the context of the V PRICIT (Regional

Validation obtained
e
=

0.2

0.0 -

0 250 500 750 1000 1250 1500 1750 2000
Number of updates (x10)

0.0 0.2 0.4 0.6

Trainina nrocess

(b) Mountain Car

0.8 1.0

(a) Frozen Lake

50_percent
same_selection
5_percent

40_percent
full_dataset
chromosome_obtained
10_percent

/

0.0 0.4 0.6 1.0
Training process

(c) Acrobot

Figure 6: Comparison of performance of the genetic algo-
rithm against random and full datasets for Frozen Lake,
Mountain Car, and Acrobot. “chromosome_obtained” stands
for the selection achieved using the GA, “same_selection”
stands for a random selection using the same number of
episodes as the solution from the GA and the percentages cor-
respond to a random selection of episodes from the dataset
corresponding to the given proportion.

https://orcid.org/0009-0003-9314-8062
https://orcid.org/0009-0004-8100-4974
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0003-3801-6801

Dataset Reduction for Offline Reinforcement Learning using Genetic Algorithms with Image-Based Heuristics

Programme of Research and Technological Innovation). We thank
Peter Stone for his insightful comments and ideas that helped us
during the process.

References

(1]

(5

[

(6]

[7
(8

=

[9

=

[10]

[11

[12]

[13]

[14]

[15]

Amir Abolfazli, Gregory Palmer, and Daniel Kudenko. 2022. Data Valuation for
Offline Reinforcement Learning. arXiv 2205.09550 (2022), 9 pages.

Michael Bain and Claude Sammut. 1999. A Framework for Behavioural Cloning.
In Machine Intelligence 15, Intelligent Agents. Oxford University, Oxford, 103-129.
Dor Bank, Noam Koenigstein, and Raja Giryes. 2023. Autoencoders. In Ma-
chine Learning for Data Science Handbook: Data Mining and Knowledge Discovery
Handbook. Springer International Publishing, 353-374.

Amirata Ghorbani and Jame Zou. 2019. Data shapley: Equitable valuation of
data for machine learning. In Proceedings of the 36th International Conference on
Machine Learning. PMLR, 2242-2251.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversar-
ial Nets. In Advances in Neural Information Processing Systems. Proceedings of
the twenty-eighth Annual Conference on Neural Information Processing Systems
(NeurIPS 2014), Vol. 27. Curran Associates, 2672-2680.

Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learn-
ing. In Advances in Neural Information Processing Systems. Proceedings of the
thirtieth Annual Conference on Neural Information Processing Systems (NeurIPS
2016), Vol. 29. Curran Associates, 4565-4573.

John H. Holland. 1975. Adaptation in Natural and Artificial Systems. MIT Press.
Varun Raj Kompella, Thomas Walsh, Samuel Barrett, Peter R. Wurman, and
Peter Stone. 2023. Event Tables for Efficient Experience Replay. Transactions on
Machine Learning Research (2023), 32 pages.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The Annals of Mathematical Statistics 22(1) (1951), 79-86.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conser-
vative Q-Learning for Offline Reinforcement Learning. In Advances in Neural
Information Processing Systems. Proceedings of the thirty-fourth Annual Confer-
ence on Neural Information Processing Systems (NeurIPS 2020), Vol. 33. Curran
Associates, 1179-1191.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. 2012. Batch reinforcement
learning. Springer. 45-73 pages.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521 (2015), 436-444.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. 2020. Offline Reinforce-
ment Learning: Tutorial, Review, and Perspectives on Open Problems. ArXiv
2005.01643 (2020), 43 pages.

Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao,
and Tie-Yan Liu. 2021. Curriculum Offline Imitating Learning. In Advances
in Neural Information Processing Systems. Proceedings of the thirty-fifth Annual
Conference on Neural Information Processing Systems (NeurIPS 2021). Curran
Associates, 1-12.

Z. Michalewicz. 1996. Genetic algorithms + data structures = evolution programs
(3nd, extended ed.). Springer, New York, NY, USA.

424

[16]

(17

(18]

=
2

[20

[21

[22

~
&

[27

[28

[29

'S
=

[31

GECCO ’25, July 14-18, 2025, Malaga, Spain

Tareq Abed Mohammed, Shaymaa Alhayali, Oguz Bayat, and Osman N Ugan. 2018.
Feature reduction based on hybrid efficient weighted gene genetic algorithms
with artificial neural network for machine learning problems in the big data.
Scientific Programming 2018, 1 (2018), 2691759.

Karl Pearson. 1901. LIIL On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2(11) (1901), 559-572.

M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain. 2000. Dimen-
sionality reduction using genetic algorithms. IEEE Transactions on Evolutionary
Computation 4, 2 (2000), 164-171.

Kajetan Schweighofer, Markus Hofmarcher, Marius-Constantin Dinu, Philipp
Renz, Angela Bitto-Nemling, Vihang Prakash Patil, and Sepp Hochreiter. 2021.
Understanding the Effects of Dataset Characteristics on Offline Reinforcement
Learning. In Deep RL Workshop NeurIPS 2021. 19 pages.

Leila S. Shafti and Eduardo Pérez. 2008. Data Reduction by Genetic Algorithms
and Non-Algebraic Feature Construction: A Case Study. In 2008 Eighth Interna-
tional Conference on Hybrid Intelligent Systems. 573-578.

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. 2021. Measuring Data
Quality for Dataset Selection in Offline Reinforcement Learning. In Proceedings of
the 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 1-8.
Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research 10, 56 (2009),
1633-1685.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579-2605.
Yifan Wu, George Tucker, and Ofir Nachum. 2019. Behavior Regularized Offline

Reinforcement Learning. arXiv 1911.11361 (2019), 25 pages.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and
Masashi Sugiyama. 2019. Imitation Learning from Imperfect Demonstration.
In Proceedings of the 36th International Conference on Machine Learning, Vol. 97.
PMLR, 6818-6827.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. 2022. Discriminator-
Weighted Offline Imitation Learning from Suboptimal Demonstrations. In Pro-
ceedings of the 39th International Conference on Machine Learning, Vol. 162. PMLR,
24725-24742.

Jinsung Yoon, Sercan Arik, and Tomas Pfister. 2020. Data valuation using rein-
forcement learning. In Proceedings of the 37th International Conference on Machine
Learning. PMLR, 10842-10851.

Guoxi Zhang and Hisashi Kashima. 2023. Behavior estimation from multi-source
data for offline reinforcement learning. In Proceedings of the 37th AAAI Conference
on Artificial Intelligence. AAAI Press, 11201-11209.

Wenshuai Zhao, Jorge Pefia Queralta, and Tomi Westerlund. 2020. Sim-to-Real
Transfer in Deep Reinforcement Learning for Robotics: a Survey. In Proceedings
of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
737-744.

Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. 2020. Transfer Learning
in Deep Reinforcement Learning: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 45 (2020), 13344-13362.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Episode Selection Problem
	3.1 Genetic Algorithm for Solving the Episode Selection Problem
	3.2 Running Example with Frozen Lake
	3.3 Results

	4 Image-based Heuristics
	4.1 Representing Datasets as Images
	4.2 Experimental Results

	5 Related work
	5.1 Dataset performance estimation
	5.2 Dataset reduction
	5.3 GAs for dataset management

	6 Conclusions
	Acknowledgments
	References

