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Abstract

Detecting malicious attacks presents a major challenge in the field of reinforcement learning (RL), as such attacks can force
the victim to perform abnormal actions, with potentially severe consequences. To mitigate these risks, current research focuses
on the enhancement of RL algorithms with efficient detection mechanisms, especially for real-world applications. Adversarial
attacks have the potential to alter the environmental dynamics of a Markov Decision Process (MDP) perceived by an RL agent.
Leveraging these changes in dynamics, we propose a novel approach to detect attacks. Our contribution can be summarized in
two main aspects. Firstly, we propose a novel formalization of the attack detection problem that entails analyzing modifications
made by attacks to the transition and reward dynamics within the environment. This problem can be framed as a context change
detection problem, where the goal is to identify the transition from a “free-of-attack” situation to an “under-attack’ scenario.
To solve this problem, we propose a groundbreaking “model-free” clustering-based countermeasure. This approach consists
of two essential steps: first, partitioning the transition space into clusters, and then using this partitioning to identify changes
in environmental dynamics caused by adversarial attacks. To assess the efficiency of our detection method, we performed
experiments on four established RL domains (grid-world, mountain car, carpole, and acrobot) and subjected them to four
advanced attack types. Uniform, Strategically-timed, Q-value, and Multi-objective. Our study proves that our technique has
a high potential for perturbation detection, even in scenarios where attackers employ more sophisticated strategies.

Keywords Adversarial reinforcement learning - Adversarial attacks - Change-point detection - Clustering applications

1 Introduction

Reinforcement learning (RL) vulnerabilities to adversarial
attacks are generally well known [1]. In a pertinent attack
scenario, an adversary may attempt to mislead a deployed
RL system during testing by manipulating attack samples.
Adversarial attacks often involve slight perturbations to
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observations from the environment, resulting in behavioral
changes that can lead to catastrophic consequences [2]. Such
vulnerabilities pose a significant threat in real-world situa-
tions [3, 4], as they can cause autonomous vehicles to swerve
into oncoming traffic [5]. These attacks can have an instant
impact on environmental dynamics. For instance, in a sce-
nario where the agent is not under attack, an action a in
the state s results in the agent being in s’, but in an under-
attack scenario, the same action a in s leads the agent to
a different state s5. Consequently, the agent might perceive
that it is in a different state than its real one. This paves
the way for the application of detection methods capable
of identifying the environmental alterations resulting from
attacks. In fact, these modifications prompt us to propose
that adversarial attack detection and context detection in RL
are closely linked [6, 7]: any sudden alteration of the environ-
ment dynamics is a context change, and in an adversarial RL
setting, such a change may mean that the agent goes from
a free-of-attack context to a under-attack context. There-
fore, detecting such changes as early as possible is mandatory
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in safety-critical domains to prevent dangerous situations or
performance degradation.

Motivated by a current lack of research, this paper aims
to provide a novel perspective on the adversarial detection
problem in RL. Specifically, we approach this problem from
a sequential perspective, where attacks can be perceived as
abrupt changes in the input. To address this issue, we propose
the utilization of a clustering-based approach from sequential
analysis cited in [8, 9] to develop a model-free countermea-
sure for RL that can effectively identify disturbances in the
environment’s dynamics. Compared to other methods [6, 10—
12], the suggested detection technique captures the sequential
nature of an MDP, does not need prior knowledge of the tran-
sition and reward dynamics, and is able to detect changes in
the environmental dynamics in real time, in the trajectory
generated by adversarial attacks, and conducts a tractable
univariate analysis of the environmental dynamics in the
search for abrupt changes. Our detection system consists of
two phases. Firstly, our approach produces a set of clusters
from the collected transitions in a free-of-attack scenario.
Then, our system discriminates between perceived environ-
mental transitions, categorizing them as anomalies or normal
based on a distance metric and a predefined threshold. This
threshold can be adjusted to optimize results based on the spe-
cific application domain. To exemplify this, we employ ROC
curves, which enable the visualization of the ideal trade-off
between true positive and false positive rates.

This paper is structured as follows: Section 2 provides a
concise explanation of RL and adversarial attacks for bet-
ter comprehension of subsequent content. Section 3 outlines
existing research on adversarial RL and various defense
methods. Section 4 introduces a novel approach to detecting
attacks by framing the problem as a context detection issue.
Section 5 describes our clustering-based detection approach,
and Section 6 reports on the evaluation performed. Finally,
Section 7 provides a summary of the main findings and future
research directions.

2 Background

In this section, we will explain the concepts of reinforcement
learning and adversarial attacks relevant to classification and
RL systems.

2.1 Reinforcement learning

We examine RL tasks formalized by a Markov Decision Pro-
cess (MDP) [13]. An MDP is a 4-tuple M = (S, A, T, R)
where S is the set of states, A is a set of actions available in
each state, R is the reward function R : § x A — N that
assigns a reward r to each state-action pair s, a, and T is the
transition function T : S x A x § — [0, 1] where T'(s, a, s')
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denotes the probability of transitioning from state s € S to
state s’ € S after taking action a € A. The objective is to
acquire a control policy, 7 (s) = a, that specifies the action
a € A to be executed in a given input state s € S for the
purpose of optimizing the return J () as indicated in (1):

K

J(m) = Zykrk (D

k=0

The discount factor, y, determines how much the agent pri-
oritizes future rewards, with values ranging from 0 to 1 (0 <
y < 1). The variable r; represents the immediate reward
received at step k. The agent interacts with the environment
and generates transitions in the form of t = (s, a,s’, r),
where s” denotes the state to which the agent transitions,
s € Sisthecurrentstate,a € Aistheactiontaken, andr isthe
reward received. Assuming a state space S in n-dimensions
(S C N") where every state is a vector s = (s, 51, -+, Sn),
and an m-dimensional action space A (A C N") where each
action is a vector a = (ao, ay, ..., a,, ), a transition tau can be
restated as T =< S0, ..., S, A0, .., A, S(s - Sy, I >, Where
7 belongs to the subset of "7+ We calculate the dis-
tance between two transitions, 7; and 7}, using the Euclidean
distance denoted in (2):

d(ti, 1)) = |y (g — 70> )

k

In the transitions i and j, the k-th component is represented
by 7; x and t; j, respectively.

2.2 Adversarial attacks

Adversarial attacks are the result of adversarial examples
in supervised learning, which have small but deliberate fea-
ture perturbations that lead to false predictions by supervised
classifiers. Adversarial examples are a worry in machine
learning, specifically deep learning, as they highlight that
even cutting-edge models can be vulnerable to small changes
in their input data. Adversarial examples provoke doubts con-
cerning the durability and dependability of machine learning
models in practical applications. Equation (3) is a formal
explanation of what an adversarial attack consists of. To
explain it, let x denote an observation and f represent a clas-
sification system. One can construct an adversarial example
for classifier f by solving the following optimization prob-
lem.

main dx,x+38) subjectto f(x)# f(x+96) 3)
The aim of this task is to determine the smallest possible
perturbation that can alter the decision made by classifier f
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in comparison to its decision based on the initial input. The
success of the attack is determined by achieving this goal,
using a similarity metric d. The optimization problem in (3)
can be solved by finding the perturbation § of an observation x
that causes the classifier f to outputanincorrectclass f(x) #
f(x + 8). The same principles apply to RL. An attacker can
target a victim who adheres to policy = by manipulating the
victim’s observations of the environment, with the objective
of inducing the victim to select non-preferred actions where
7 (s) # m(s+3). Thiscanlead to a decrease in the cumulative
reward or cause severe consequences for not just the victim
but also any neighboring systems or persons.

3 Related work

In this section, we present a thorough literature review of
previous research related to our approach, divided into two
parts. The first part covers documented attacks found in exist-
ing literature, followed by a detailed analysis of currently
employed detection mechanisms.

3.1 Attacks

In the literature, three distinct attack targets have been
identified for injecting Adversarial Examples into any RL
algorithm. Figure 1 illustrates these targets, where each
adversary corresponds to a unique attack. To clarify, the tar-
gets are:

1. State perception. A significant portion of academic
works focuses on the manipulation of state perception
during both training [14, 15] and testing [16, 17] in
machine learning. The primary aim of these studies is to
delay, perturb, or falsify the learning agent’s perceived

Fig.1 RL attack targets. The
adversary can compromise three
different points of the learning
process: the perceived state, the
selected action, or the reward
function
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state s in the face of malicious attacks. For instance,
Uniform strategy [16] implements an iterative attack
that misleads the victim in each iteration. Crafting an
adversarial example during each iteration makes this pro-
cess computationally complex. Therefore, some research
attempts to minimize the number of attacks performed.
For example, an attack takes place when the Q value sur-
passes a predetermined threshold [14] or when a learned
policy has a vulnerability found based on the differ-
ence between the most and least effective action [18].
Novel methodologies propose to execute attacks using
a multi-objective function. which aims to maximize the
impact on the victim’s policy and minimize the number
of assaults [19].

2. Action selected. The attackers can also aim towards driv-
ing the victim to undesired states by disrupting the action
a executed by the learning agent [20]. To execute this type
of attack, the attacker must be familiar with the path to
the malicious states.

3. Training reward. Attacks that perturb the reward func-
tion exist. These attacks pertain to changes made to
the reward produced by the environment in response to
actions taken by an RL agent [21]. The objective is to
modify the victim’s policy, driving it toward undesired
states.

While our method can address all three types of attacks
by analyzing the complete trajectory of the agent, we focus
on preventing the first attack on state perception, since
the specific attacks under evaluation caused perturbations
in the perceived state. In addition, state perception attacks
are extensively studied in the adversarial field. To facilitate
a thorough and comprehensive analysis of multiple attack
strategies, focus is directed towards the behavioral patterns
of the first opponent illustrated in Fig. 1.
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3.2 Detection mechanisms

Figure 1 can also be utilized to categorize existing defense
methods since each one focuses on detecting these cate-
gories of attacks. However, many of the defense mechanisms
employed in RL focus on identifying adversarial observa-
tions, neglecting the potential vulnerability of the actions and
the reward signals, which are also susceptible to adversar-
ial manipulation. These defenses often leverage techniques
directly inherited from supervised learning paradigms. In
this context, there are two main classes. The first category
proposes training procedures to increase the robustness of a
trained model against adversarial examples. Defensive dis-
tillation [22] and adversarial training [23] are methods to
include in this category. Distillation is a process for transfer-
ring knowledge from different architectures; the goal of using
several different architectures is to reduce computational
complexity. This defensive distillation allows the authors
to reduce the effectiveness of the adversarial examples.
When defensive distillation is used, an eightfold increase
in the number of features is required to disrupt the learning
model [24].

In contrast, adversarial training defenses incorporate
adversarial examples into the collected data to train an archi-
tecture that detects novel perturbations [4]. In this method, the
learned model loses a small amount of accuracy in predicting
clean examples, but adversarial training creates robustness to
adversarial examples. Although distillation and adversarial
training can achieve some success, they have two major draw-
backs. First, training models that require attacks to learn to
discriminate are not feasible in safety-critical systems where
a single attack can result in catastrophic consequences. Addi-
tionally, the trained model can be easily fooled by adversarial
examples generated by attack methods not encountered dur-
ing training. Therefore, it is crucial to establish efficient
detection methods that can be applied to diverse domains
to counteract adversarial samples, even those that are novel
to the system.

The second category focuses on detecting the statistical
differences between the adversarial examples and the legiti-
mate data [25]. For example, using a binary classifier to detect
adversarial examples [26]. In this case, the authors show that a
binary classifier trained with three different adversarial craft-
ing methods is able to detect almost all attacks. However,
they do not guarantee the detection of attacks not used in
the training data. Other works based on statistical data have
tried to extend their defenses against more adversarial craft-
ing methods. Since these defenses are based on statistical
data [11], they are not able to detect specific attacks. The
collection of adversarial inputs must be large enough to gen-
erate a statistical bias capable of detecting the presence of
unexpected behavior. Another work in this category devel-
ops adetector based on the Mahalanobis distance between the
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input variables [27]. The difference between the Euclidean
distance and the Mahalanobis distance is that the latter takes
into account the correlation between the variables. However,
to detect attacks in an RL task, it is not only relevant whether
an individual observation belongs to the training or test dis-
tribution or not. In an RL setting, it is extremely important
to ensure the coherence of the transition and the reward the
agent receives from the underlying MDP. Therefore, all these
methods are effective in detecting single adversarial obser-
vations, but they forget the sequential nature of an RL task,
where a sequence of states, actions, and rewards takes place.
To sum up, they are blind to adversarial transitions. Such
adversarial transitions may be composed of states belong-
ing to the training or test distribution, which is even more
unlikely for approaches that rely solely on observations to
detect them [11, 25]. In contrast, we focus on the problem of
detecting adversarial examples in sequential decision tasks.
For this purpose, we exploit the coherence of the dynamics
of the environment.

In this paper, we suggest that adversarial attacks can affect
the distribution of transitions and rewards in RL environ-
ments. Similarly, such attacks affect the distribution of the
training data in a supervised classification task [11]. There-
fore, the abrupt perturbation of the environmental dynamics
allows us to identify adversarial attacks. To the best of
our knowledge, adversarial attack detection techniques have
never been tackled from this novel perspective in RL. Some
of these approaches are based on change-point detection,
which involves a variation of the statistical features. And,
it is relevant to keep in mind that this novel perspective
opens the door to apply existing detection approaches also
in an adversarial context [6], where they formalize an RL
algorithm with context detection (RL-CD) to deal with non-
stationary environments. Aiming to improve these results,
other works focus on classifying the transitions into two
categories: known and unknown, depending on a quality
measure [7]. If this metric exceeds a certain threshold, it
is considered a context change. However, RL-CD requires
a set of parameters to be tuned according to the problem.
Thus, this quality measure mainly depends on this ad hoc
configuration. To solve this complex tuning task, another
work proposes an incremental CUMSUM, building a library
of models and policies for each type of context [28]. The
limitation of this approach is the complexity of comput-
ing different policies and models. Furthermore, all of these
approaches require a priori knowledge of the transition and
reward dynamics, but this assumption rarely holds in the real
world. In contrast, others detect the statistical differences
between episodes, but these approaches are unable to detect
statistical changes between time steps [12, 29, 30]. Such
episodic detection techniques are useless in an adversarial
context, where it is necessary to detect attacks as soon as
possible.
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In contrast to all previous approaches, this paper pro-
poses a model-free countermeasure for the rapid detection of
adversarial attacks based on the abrupt changes they produce
in the sequence of transitions. Furthermore, this analysis is
not performed from a multivariate point of view, but from
a more compact and tractable univariate perspective. Such
a multivariate analysis of transitions is not feasible due to
the curse of dimensionality: the high dimensionality of RL
tasks prevents us from using multivariate methods [10]. Con-
sequently, a clustering-based approach is proposed in this
paper to transform the analysis of the sequence of transitions
from a multivariate to a univariate problem.

4 Problem formulation

Let M = (S, A, T, R) be an MDP in which an agent, which
we will call the victim, has correctly learned a near-optimal
policy 7. Assume that the victim interacts with M using
in a free-of-attack context. At each time step, w produces
experience tuples of the form t = (s, a, s’, r) derived from
T and R. Then there exists a time step k > 0 at which an
adversary begins to perturb the states perceived by the vic-
tim, s — s5, with s, 55 € S and s # s5. In this new context,
using the same policy 7, the victim will perceive experience
tuples of the form t = (s, a, sé, r), where for each state-
action pair (s, a) the next state s§ is not chosen according
to 7', but from a different distribution 75. Similar reason-
ing applies if the adversary attacks the actions or even the
reward signal that the victim perceives from the environ-
ment. Thus, the adversary can perturb the functions 7 and R
perceived by the victim, possibly at the same time. Hence,
there exist time steps in which the trajectories sampled from
the environment are associated with a new adversarial task
Ms = (S, A, Ts, Rs) that the adversary induces in the vic-
tim whenever he attacks with 75 # T and/or Rs # R. In
this scenario with two MDPs, M and Mg, the problem of
attack detection is reduced to the problem of change-point
detection, i.e., detecting the time steps at which the environ-
ment model changes. For example, at time k the environment
model changes from e.g. M to M, in which case the victim
changes from a free-of-attack context M to a under-of-attack
context M. The context can also change from Mj to M,
in which case the victim will no longer receive attacks.

It is important to note that from a sequential analysis point
of view, the problem of context detection reduces to detecting
abrupt changes in streaming data. In RL, a data stream is a
sequence of transitions as in (4):

['={t1, 7,73, ..., Tk Tkt 1 Tht2s Tht3s -+ } 4
where t; is the ¢-th transition perceived by the victim
at time step ¢. The change point detection problem in the

I" sequence can be formulated in terms of testing the null
hypothesis H against the alternative hypothesis H [31].
‘Ho asserts that at the current step ¢ the model parameter
remains the same, so the transition 7; € I" was derived using
M. The alternative H; claims that at the current step ¢ the
model parameters change and 7; € I is derived from M. In
an adversarial setting, we can obtain the expression of (5):

{ Ho —attack )

‘H; attack

where the hypothesis is a logical expression attack that indi-
cates whether an attack occurs. A powerful strategy for
implementing the attack point detection mechanism depicted
in (5) is to use a clustering-based approach as described
in Section 5. This approach aims to detect attacks in M
in a timely manner without introducing false negatives or
positives.

5 Clustering-based attack detection

A clustering-based approach to detecting attacks offers two
distinct benefits compared to other methods of detecting
change-points [6, 7, 10, 28]. Firstly, it enables the develop-
ment of a “model-free” attack detector that does not require
approximation of the transition functions 7 or Ts or the
reward functions R or R;s [6, 7, 28]. On the contrary, it con-
verts a complex multivariate change-point detection problem
into a simpler and more manageable univariate change-point
problem, as explained in Section 5.1. Our recommended
strategy consists of two stages. Firstly, we obtain knowledge
on the transition space partition (Section 5.1). Secondly, we
employ the learned partition to identify adversarial attacks
(Section 5.2).

5.1 Clustering of the transition space

In the initial stage of the proposed approach, the aim is to
develop a partition C of the transition space through the tran-
sitions obtained from a policy 7 in a free-of-attack context.
The first step of the algorithm is represented by Algorithm 1,
which requires inputs including the number of episodes, H,
the number of steps, K, per episode, the policy, 7, and the
number of clusters, k.

Algorithm 1 stores the transitions T = (s, a, s’, r) that the
agent experiences with 7 in 7 (line 7). After H episodes,
it creates a k-means model C = {cg, ¢y, ..., cx} utilizing
the transitions from 7 as the training set (line 9). Here, ¢;
represents the i-th centroid with ¢; = (s;, a;, sl.’ , ri). It gen-
erates a list, denoted as 8 = {fo, B1., ..., Br}, where each
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Algorithm 1 First step: clustering construction.

Algorithm 2 Second step: context change detection.

Require: H, K, , k
1:Set7 =0

2: for h =0to H do
3.  Initialize s

4 forn =0to K do

5 Choose action a derived from 7 (s)
6: Take action a, observe s’ and r

7 T:=TU(s,a,s,r)

8: s <« s

9:  end for

10: end for

11: C,B <« k-means(k,7)
12: return C, B8, T

Bi represents the radius of the i-th cluster, as computed in

(6).
1 U
Bi = n—i;d(rj,c,») (©6)

The algorithm uses the resulting partition of the transition
space C and the list of thresholds g to detect adversarial
attacks, where t; refers to the j-th transition in the i-th clus-
ter, and #n is the number of instances in that cluster (line 9).
It is worth noting that the sequence I' depicted in (4)
consists of multiple variable transitions 7 C R @xm+m=1
necessitating a multivariate analysis to detect change points.
However, the partition C resulting from Algorithm 1 enables
us to convert the multivariate analysis of " into a univariate
analysis by simply considering the sequence I'C in (7).

TC = (dy,, duyy duys -y dyyy s iy s gy -} (7)

Here, d;, € N represents the Euclidean distance between
the transition t; in the #-th time step and its nearest centroid
¢; € C. This reduction enables detection of abrupt changes in
the univariate sequence I"C for the attack detection problem,
as elaborated in Section 5.2.

5.2 Detection of adversarial attacks

Roughly speaking, the C partition serves as a coarse rep-
resentation of the trajectory followed by the agent in a
free-of-attack scenario. Consequently, the I series can rec-
ognize unusual deviations in the agent’s trajectory due to
adversarial attacks in an under-attack scenario. The proposed
detection mechanism is demonstrated in Algorithm 2.
Algorithm 2 takes as input the number of episodes H, the
number of steps per episode K, the policy 7, the transition
space partition C, and a list of thresholds 8. After obtaining
a suitable partition of the transition space C in the previous
step, we calculate the distance d;, between the perceived
transition 7; at time step ¢ and its nearest centroid ¢; € C (line

@ Springer

Require: H, K, n,C, 8

1.t <1

2: for h =0to H do

3 Initialize s

4 forn =0to K do

5 Choose action a derived from 7 (s)
6: Take action a, observe s’ and r

7 T = (s,a,s’,r)

8 dr, < minosjgp d(‘[,,Cj)

\o-. ..

: if attack = [d;, > B;] then
10: Stop execution
11: end if
12: s <« 5
13: t <~ t+1
14:  end for
15: end for

8 in Algorithm 2). Then, Algorithm 2 compares this distance
with the threshold ;. Consequently, the logical expression
attack shown in (5) is reduced to attack = [d;, > B;]
(line 9). If d, is greater than §;, the transition is deemed an
adversarial transition, meaning a context change has been
deduced from an adversarial attack. This is a methodology
for model fitting wherein a change is acknowledged if a new
transition does not fit into any of the current clusters. If the
system detects a context shift from *free-of-attack’ to *under-
attack,” the agent ceases its execution (line 10).

Figure 2 shows an example of how our detection system
works. The figure displays transition points as blue and red
markers. Upon creating the cluster model C, we obtain a set
of centroids c; € C (green stars), and establish thresholds ;
as the radius of each centroid. The radius (B;) varies based
on the training transitions associated with each cluster. Thus,
instances that exceed the threshold distance to the nearest
centroid are identified as normal transitions (blue markers),
while the remaining instances (red dots) are classified as
adversarial transitions.

It is crucial to recognize that the thresholds significantly
impact the effectiveness of the suggested detection mecha-
nism. In tasks involving security, these values cannot undergo
adjustments in the deployment stage while anticipating the
system to have received enough attacks to differentiate
between those that are and are not an attack, because even
a single attack can have disastrous consequences. Therefore,
we have opted to calculate their values heuristically in the ini-
tial algorithm step, as outlined in (6). These computed values
of B enable the Algorithm 2 to efficiently identify attacks at
an early stage.

6 Evaluation

In this section, we present the results obtained by using
our proposed detection mechanism in the grid world and
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Fig.2 Representation of the
partition of the transition space

Radius

three well-known OpenAl games: carpole, mountain car, and
acrobot. We design the experiments (i) to demonstrate that
the transition-based detector proposed in this paper is able to
capture the dynamics of RL tasks, in contrast to state-based
detectors that focus only on single observations (Section 6.2);
(ii) to validate the ability of the proposed approach to detect
context changes from a free-of-attack to a under-attack con-
text (Section 6.3); (iii) to validate the proposed approach
from a binary classification perspective, which allows us to
classify the transitions into two groups: adversarial and non-
adversarial transitions (Section 6.4). Before doing so, we first
present the experimental setting (Section 6.1).

6.1 Experimental setting

We evaluate our attack detection approach based on cluster-
ing in three well-established domains. Initially, we perform
an initial proof of concept by utilizing a sample domain, such
asa 10 x 10 grid. Subsequently, we refine our methodology in
three sophisticated OpenAl domains, namely carpole, moun-
tain car, and acrobot. In all scenarios, we presume that the
victim had previously learned a policy 7 in a free-of-attack
setting. For the purpose of this study, we implement a tabular
Dyna-Q in the grid domain and utilize the DQN algorithm
for the OpenAl environments. Table 1 displays the parame-
ter values required for learning the policy 7. Each domain is
described in terms of its state space S and action space A,
the algorithm employed to learn the policy 7, the learning

rate o, and the maximum number of steps per episode K.
We set the number of episodes to 1000 and the discount fac-
tor to 0.99 in all domains. It is important to emphasize that
the domains employed in this study originate from the Ope-
nAl Gym framework, a widely recognized platform for the
development of Reinforcement Learning algorithms. Conse-
quently, the specific configuration of the state space, action
space, and the parameter K was not chosen by the authors,
but rather, they adhere to the predefined settings within these
Gym implementations. With respect to the “Algorithm” col-
umn in Table 1, it is essential to acknowledge that both the
selection of the RL algorithm, network architectures, and
the parameter denoted as « were informed by prior research
endeavors that have demonstrated their effectiveness [19].

After m converges, the policy is used to generate the tran-
sition space. Later, the transition space will be used to build
the partition (C) and compute each radius’s distance (8). The
number of transitions |7 | utilized by k-means in Algorithm 1
is comparable across the four domains. We conducted 200
test episodes to generate a similar number of instances. Com-
bined, we have 25,000 transitions for each environment. We
evaluated the number of clusters using the values k = 64,
256, 1024. Our observation shows that using more than 1024
clusters does not yield a significant improvement and only
complicates the partition creation process in terms of mem-
ory and time.

Finally, we evaluate our detection approach against
four cutting-edge strategies: the Uniform attack [16], the
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Table 1 Parameter setting of the

Jearning process Domain S A Algorithm o K

Grid World (x,y) <0,1,2,3 > Dyna-Q 107! 30
x,y € [l,10]

Mountain car (p,v) <0,1,2 > DQN 1073 200
pel[-1.2,0.6] (2x24x24x%x3)
v € [—0.07,0.07]

Carpole (p,v,¢,k) <0,1> DQN 1073 300
p E[-24,24]
v e [—inf,inf] (4 x24x48 x2)
¢ € [—41.8,41.8]
k € [—inf,inf]

Acrobot (p,v, ¢, k, ®, V) <0,1,2 > DQN 1073 500

p.v, ¢,k €[—1,1]

o € [—12.567,12.567]

(6 x24 x48 x3)

Y e [—28.274, 28.274]

Strategically-Timed attack (ST attack) [18], the O attack!
[14] and the Multi-Objective RL attack (MO attack) [19].
Unlike the uniform attack, both the ST and Q attacks try to
do as much damage to the victim as possible by reducing the
number of attacks. The ST attack is triggered only when the
discrepancy between the most and least favored action sur-
passes a predetermined threshold. Additionally, the Q attack
computes the highest Q value for each state and launches an
attack if this value surpasses a threshold. Hence, both the ST
and Q attack necessitate a threshold, with thresholds set at
0.3 and 1.4, respectively. Finally, we compare these attacks
to the more advanced MO attack, which aims to undermine
the victim’s policy in the long term. For this purpose, MO-
attack aims to achieve two goals: maximizing the damage
to the victim’s policy and minimizing the cost of attacks in
order to avoid detection. To configure the type of attack, MO-
attack also necessitates defining a weight, denoted by w, for
its two optimization metrics. If w = 0, the attack prioritizes
cost optimization, whereas if w = 1, the adversary priori-
tizes optimizing the damage inflicted on the victim. We use
two different versions of the MO, one that prioritizes caus-
ing maximum damage to the victim with a weight of 0.7, and
another that aims to minimize the cost of the attack with a
weight of 0.2. We would like to clarify that the chosen attack
strategies are state of the art in terms of minimizing the num-
ber of attacks to be executed and preventing the attacker from
launching continuous attacks, which would make them eas-
ier to detect. Furthermore, in the context of RL, few attack
strategies have been proposed to date, and the chosen ones

! Kos and Song [14] use the Q attack only when the value function
surpasses a certain threshold, thus only targeting crucial moments to
disrupt the victim. We are build upon the same idea, but for practi-
cal purposes we employ the action-value function instead of the value
function.
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represent a broad spectrum of strategies that allows for a
comprehensive analysis of the detection capabilities of the
proposed method.

In these attack strategies, an attack is defined as the addi-
tion of noise, denoted as 8, to the original state. The range of
noise values used in this paper is described in Table 2, and
within this range, there are six different attacks defined. Some
of them are classified as minor, while others are deemed more
damaging perturbations. This analysis serves to determine if
our approach can detect both small and large perturbations.

The rationale for the specific parameter values in Table 2
is rooted in their ability to ensure a correct balance between
the disruption inflicted to the behavior policy of the victim
and the associated attack cost: it is easy for our approach to
identify high-level noise attacks that cause significant dis-
turbance to the victim, while simultaneously acknowledging
its limitations in detecting low-level noise attacks that, in
fact, may not disturb the victim. The values presented in
Table 2 have been chosen to establish a correct balance
between these disparate scenarios. Naturally, the more
aggressive the perturbation, the greater the cost. However,
the only multi-objective strategy which determines the most
effective attack to disrupt the victim by minimizing attack
costs is the preferred approach. Other methods randomly
select from predefined attacks, ignoring cost considerations.

6.2 Single observations vs. transitions

In this section, we demonstrate that detection mechanisms
relying solely on single observations are incapable of detect-
ing adversarial attacks’ impact on the environment’s dynam-
ics. We note that single-observation-based detection methods
are most popular for detecting adversarial attacks [11, 25—
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Table 2 Range of § values,

. Grid World Mountain Car Carpole Acrobot
which represents the amount of
noise added to the original state 5 (x,y) (. V) (P, v, ¢, k) (P, v, b, K, 0, Y)
x,yel[-1,1] p.v e [—0.025,0.025] p €[ —0.25,0.45] p.v, ¢,k € [—0.025,0.025]

v el —0.50,0.26]
$ e[ —0.43,0.25]
K e[ —0.05,0.81]

w e [—0.31,0.31]
¥ € [=0.71,0.71]

27]. However, we show in this section that such methods are
ineffective in an RL context.

Figure 3 displays an example 3x3 maze where an agent
must navigate to the goal box marked in green, denoted by
the letter G on the grid. The agent has acquired an optimal
policy, 7, and consequently, in a scenario lacking interfer-
ence, it would reach its goal in four steps. In this example,
we assume that an adversary begins injecting attacks at time
step 160. This basic attack involves altering a single state:
whenever the victim enters state 511, the adversary deceives
it into thinking it entered state so; instead of s11. As a result,
the attack generates the adversarial transition (s21, up, o1, 1)
rather than the legitimate transition (sp1, up, s11, r).

In this scenario, it is assumed that there are two detectors
based on the approach outlined in Section 5. One focuses on
transitions, while the other focuses solely on single states.
For simplicity, both detectors have the same number of cen-
troids in C as there are legitimate transitions or states in
the task. Figure 1(b) displays I'C values for each detec-
tion mechanism. It indicates the distance of transition or
state at the time step ¢ from the closest centroid in C. We
observe that the state-based detector does not exhibit any
bias in I'C due to this attack, making it undetectable (red line
in Fig. 1(b)). If the adversarial transition (s>, up, so1, ') is
analyzed statically, considering the states individually, both
s21 and s11 belong to the task’s state distribution, making
the argument valid. However, the transition-based detec-
tion mechanism (blue line in Fig. 3(b)) highlights that the
sequence (s21, Up, so1, ) violates the environmental dynam-

4
—— Transition-based
3 —— State-based
o 1 2 &
§2
o> ofs| &
1 o
: 0
2| s cp=fd | < 0 100 200 300 400
Time Step
(a) (b)

Fig. 3 (a) Deterministic 3 x 3 grid world, and (b) graphical repre-
sentation of the sequences I'C of the state-based and transition-based
detection mechanisms

ics. Hence, in a sequential decision-making task, it is crucial
to examine not only whether the states belong to the original
distribution of states [11, 23], but also the consistency in the
environment’s dynamics.

Thus, defenses relying solely on recognizing known states
would not identify this type of attack. However, our approach,
which analyzes the entire transition would be able to detect
that this transition has never occurred in a system free of
attacks, and would therefore be able to detect that the agent
is the victim of a falsification of the transitions it receives. In
addition, analyzing the entire transition would enable us to
identify all attacks on the RL systems depicted in the Fig. 1.

6.3 Context change detection: from Free-of-attack
to under-attack context

The objective of this section is to verify the capability of the
proposed method in detecting a change in context from a free-
of-attack scenario to an under-attack scenario. We assume
that a policy 7 has already been learned, and Algorithm 1
employs this policy to generate the transition space partition
C and alist of thresholds S for each of the suggested domains.
We assume that a policy w has already been learned, and
Algorithm 1 employs this policy to generate the transition
space partition C and a list of thresholds g for each of the
suggested domains.

Figure 4 illustrates how the re sequence for each domain
evolves over time. To enhance the clarity of the illustration,
we calculate a simple moving average of 1000 transitions in
order to smooth the trend in the four domains. Additionally,
the vertical dashed line denotes the point where the adversary
begins injecting attacks. This demarcation point signifies the
transition from a context free of attacks to one that is under
attack. From the vertical line in Fig. 4, a line for each attack
type is plotted. A clear change in the trend of the re sequence
due to the adversary’s attacks is evident. It is observed that
the MO attack causes the highest distortions in Fig. 4 as it
produces transitions that are more dissimilar from the training
set than the other attacks. The Uniform, ST, and Q attacks
produce comparable results. These attacks employ the same
strategy for perturbation injection, but the ST and Q attacks
differ by performing fewer attacks, only when their metric
exceeds a threshold. Our method can produce diverse signals
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Fig.4 Evolution of the distances in the sequence I'C for each domain

when the agent is being attacked in any test environment. This
is due to the fact that we analyze the sequential nature of
the transitions rather than focusing strictly on the perceived
states.

The objective is to identify any alteration in the sequence
trend T'C as soon as possible. Several approaches may be
used to accomplish change point detection, but we opted for
the model fitting method presented in Section 5.2. When the
logical expression attack = [d;, > B;] evaluates to true,
transition t; is designated as an adversarial transition, and
execution is stopped. Table 3 displays the accuracy of our
detector with the given logical expression and £k = 1024
clusters. The value of k adequately covers training transitions
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in the stochastic grid domain, resulting in the detection of
almost all attacks.

The results in Table 3 reveal successful detection of the
most harmful attacks generated by all analyzed strategies.
Notably, the “mountain car” domain poses the most diffi-
cult challenges in detecting these disturbances, given its two
variables and minor variations in transitions compared to the
original distribution. In contrast, MO attack is detected in all
domains with significant success. This strategy follows opti-
mality criteria, leading to an attack policy of diverting the
victim from its initial trajectory. The success of these attacks
results from the victim’s movement through less-visited
regions of the state space, providing more diverse transitions
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Table 3 Accuracy of attacks - -
detected using the radius of each MO (high) MO (low) Uniform Q-value ST-attack
cluster as a threshold with 1024 Grid 1.00 1.00 0.84 1.00 1.00
clusters
Carpole 0.85 0.86 0.80 0.77 0.69
Mountain car 0.74 0.80 0.61 0.69 0.63
Acrobot 0.88 0.86 0.83 0.91 1.00

during analysis. Additionally, this approach involves unnec-
essary attacks that have no impact on the initial transition
causing inaccurate anomalies that our detector is unable to
identify.

There are two methods to enhance success rates: modify-
ing the threshold parameter, 8, to differentiate the adversarial
transitions more effectively, or increasing the number of
clusters for these domains. Subsequently, we will aim to
identify these attacks by separately modifying g in the next
subsection.

6.4 Detection of adversarial transitions
from a classification perspective

In this section, we will evaluate the quality of our detec-
tion mechanism. Specifically, we will measure the classi-
fier’s ability to distinguish between adversarial and non-
adversarial transitions. We analyze accuracy by examining
the threshold 8 and the number of clusters. In this evaluation,
we assume that the parameter 8; remains constant for all clus-
ters to simplify the process. To conduct a sensitivity analysis,
we calculate the ROC curve, which displays the true positive
rate (TPR) along the y-axis and the false positive rate (FPR)
on the x-axis. This approach visualizes the detection sys-
tem’s performance as the threshold g increases. Therefore,
each point on the ROC curve represents a different threshold
at which our detector produces different results in terms of
true positive rate versus false positive rate. Initially, when g is
at 0, all transitions are identified as adversarial. As the value
of B increases, a higher number of transitions are classified
as non-adversarial, leading to a reduction in false positives
by correctly recognizing these transitions as non-adversarial.
Nevertheless, some attacks might be incorrectly identified.
Therefore, we utilize ROC curves to determine the optimal
value of 8. Eventually, 8 reaches its maximum value and the
detection system classifies all transitions as non-adversarial.
We perform an exhaustive search for all thresholds, and if
the area under the curve (AUC) is equal to 1, it indicates that
the detection system is effectively classifying all transitions.
Conversely, an AUC close to 0.5 indicates that the classifier
is behaving randomly.

Figure 5 contains all the results of our defense. Each row
in Fig. 5 contains the results of each domain, i.e., we show
the results of grid, carpole, mountain car and acrobot respec-

tively. Additionally, each column shows the results grouped
by each clustering configuration, we show the results for
k = 64,256, 1024 respectively. In each figure we plot a line
for each attack evaluated: M O attack with w = 0.7 (blue),
M O attack with w = 0.2 (orange), Uniform (purple), O—
(green) and ST attacks (red). In addition to the ROC curve, we
attach the AUC score of each line in the legend. This allows
us to distinguish the configuration with the best performance
for each attack and domain.

As the number of clusters k increases, we obtain better
results. Nonetheless, the value of k increases the complexity
of building the transition partition. For this reason, we sug-
gest that a higher value of k is not necessary. If we focus
on the last column in Fig. 5 (k = 1024), in general, our
defense obtains promising results in all the domains detect-
ing all kinds of attacks. We achieve AUC scores over 0.8 in
the grid and the carpole domains. Nevertheless, smooth vari-
ations in the transitions of the mountain car are enough to
mislead the victim. From the point of view of our detector,
it is more difficult to distinguish the instances perturbed by
smooth attacks. As we have analyzed the signal generated for
all domains, when introducing perturbations in both free-of-
attack and under-attack scenarios, in the domain of acrobot,
it is observed that the signal generated in a free-adversary
environment is higher than in other domains. However, upon
introducing attacks, there is a noticeable increase in this sig-
nal. This confirms that, as with other domains, the perturbed
states differ from the original ones and thus our detection
system is capable of detecting these perturbations. For this
reason, we obtain worse AUC scores in this domain espe-
cially, under the Uniform and the ST attacks, as we observe
in Fig. 5(i) and (D).

Obviously, as the number of clusters increases, the orig-
inal transitions are better distinguished from the adversarial
ones. We show that this occurs in the grid domain, comparing
Fig. 5(c) where the number of clusters is almost similar to
the number of undisturbed transitions. In other words, a low
number of centroids means that some regular instances get
a farther distance from their nearest centroid, as we observe
in Fig. 5(a). Then, the detector may classify these instances
as attacks, i.e., as adversarial transitions, when they are non-
adversarial ones, increasing the number of false positives.
Therefore, in these cases, the AUC score is lower. In general,
MO attacks are easier to detect. Especially the version which
maximizes the harm to the victim. This attack learns the best
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perturbation to drive the victim to undesired states. Once the
victim is in an unknown place, the enemy stops attacking.
However, the victim generates transitions that differ from
the training dataset because these transitions do not belong
to the instances used to learn. In this way, our distance metric
generates larger values that exceed the threshold and, it pro-
duces that our detector classifies these transitions as attacks
increasing the ratio of false positives. Such false positives can
be reduced by increasing the exploration rate during training
to capture more trustworthy examples. After the MO attack,
Q— attack is the next attack more detectable. We obtain AUC
scores over 0.8 in all the domains. This attack attempts to mis-
lead the victim in states close to its goal. In contrast to MO,
Q— attack does not drive the victim to undesired locations.
This attack deviates the victim at the end of the episode,
allowing our detector to identify these anomalies correctly.
ST attack chooses an attack randomly when the difference
between the best and the least preferred action exceeds a
threshold. As equal to the MO-attack, the enemy attacks in
some critical points, leading the victim to uncharted states.
As a result, we obtain lower AUC scores in this attack. The
same occurs in the Uniform attack. The AUC score of the
Uniform attack is over 0.8 in the grid and carpole domain.
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However, the performance of our detector decreases in the
Mountain Car. The reason is that some of these perturbations
do not alter enough the trajectory of the victim. This type
of perturbation makes it more difficult to detect the Uniform
strategy than the rest of the evaluated attacks.

In the Acrobot domain, we achieve strong results, with a
success rate exceeding 80%, in identifying attacks generated
against the attack strategies tested. Although the perturba-
tions introduced in this domain are small, they are applied to
a larger number of variables compared to the other domains.
For this reason, the anomaly detection results obtained in
this domain are very high. Consequently, as the threshold
B increases, both the true positive ratio and the false posi-
tive ratio experience parallel increments. Furthermore, even
our approach is successful against the multi-objective attack
strategy. Compared to the Q-value and ST strategies, the
other attacks create more disruptions during the first steps of
the episode. There are numerous additional transitions in the
initial steps of episodes with distinct domain initialization.
Consequently, our detection system can create a significant
number of clusters in the beginning part of the domain and
less toward the end. For this reason, attack strategies that
initiate a greater number of attacks at the start are more chal-
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Fig.6 Elbow method for our domains: (a) Grid, (b) Cartpole, (c) Mountain car, and (d) Acrobot

@ Springer



2644

R. Majadas et al.

lenging to detect. This is due to the fact that the original
transitions bear a closer resemblance to the anomalous ones.

6.5 Ablation study of k

Selecting the appropriate value for k in the k-means cluster-
ing algorithm is a crucial step that significantly influences
the outcome of the clustering process. This choice essen-
tially determines how the data is grouped and organized into
distinct clusters. If k is incorrectly chosen, it can lead to inac-
curate representation of the data’s underlying structure. For
instance, a very high k£ might result in an excessive number
of clusters, making it difficult to extract meaningful insights.
On the other hand, choosing a very low k could oversim-
plify the representation, overlooking valuable patterns and
groupings in the data. Striking the right balance with k is
essential to derive meaningful and actionable insights from
the clustering process, which is vital for our purpose.

In our approach, dealing with the under fitting problem
holds heightened importance. Inaccurate representation of
the data structure could lead us to misclassify typical transi-
tions as anomalies, significantly inflating the count of false
positives. Consequently, if a notable surge in false positives is
noted, adjusting the k value to generate additional prototypes
is a viable approach. The objective is to enhance the fidelity
of representing the initial data and achieve a more precise
differentiation between normal transitions and anomalies.

To determine the optimal k for our detector, we execute an
elbow method to determine the optimal value of centroids to
use in a k-means clustering algorithm. This method find the
equilibrium between the number of clusters needed to reduce
the distortion of the clustering points and the time to execute
the algorithm. The optimal & is typically selected at this point,
balancing the trade-off between model complexity and clus-
tering quality. The elbow method provides a visual aid and a
quantitative basis for selecting a suitable number of clusters,
enhancing the effectiveness and interpretability of cluster-
ing results in various applications. Plots in Fig. 6 illustrates

that for our four domains, the number of optimal clusters
is always less than 1024, following the elbow method. For
this reason, we opted for 1024 clusters due to the sufficiency
of the distortion obtained in identifying adversarial transi-
tions more effectively in all domains covered in this paper,
and, in addition, computing the cluster set does not entail an
excessively high time investment.

In addition to these plots, we also generate Table 4 with the
average of the distortion and its standard deviation metrics
for these set of clusters. The table presents the results of
10 executions with randomly initialized centroids. Table 4
demonstrates that the distortion is significantly reduced when
using 1024 clusters, regardless of random initialization. In
all cases, the standard deviation approaches zero, thereby
guaranteeing robust detection of adversarial transitions, as
demonstrated in Sections 6.3 and 6.4.

The graphs and tables showcased in this section provide
clear evidence that, within the chosen domains, distortion
noticeably diminishes once the number of clusters reaches
1024. Hence, we have opted to employ this specific k-
value for our approach. Given that our proposed approach is
designed to be applicable across various domains, it becomes
imperative to undertake a comparable analysis in order to
ascertain the suitable k-value for preventing under fitting in
the data structure of each distinct domain.

7 Conclusions

This paper describes a novel clustering-based approach for
detecting outlier transitions in RL. We evaluate our detector
against four state-of-art attacks in three well-known domains.
Next, we summarize the main conclusions found in this
paper:

(i) A novel framework for attack detection. The main
contribution of this paper is a novel framework for attack
detection based on the perturbations these attacks produce
in the transition and reward dynamics that the victim per-

Table 4 Distortion generated

for different k values in the Domains - ,

proposed domains k-value Grid Carpole Mountain car Acrobot
8 1.606.202,8 £+ 31.307,1 7.582,1 £218,8 3389+ 154 99.099.4 + 2744
16 306.451,4 +24.823,7 3.186,0 £ 107,0 111,6 £3,7 66.985,2 + 280,4
32 67.827,8 £ 3.674,1 1.292,7 £ 14,4 30,5+ 0,3 42.092,5 + 318,6
64 20.793,1 £ 572,7 613,8 £ 8,1 9,8 £0,2 25.867,1 £185,1
128 3.740,5 £ 82,8 291,3 +£2,0 34+0,1 15.856,7 £ 65,1
256 4446 =79 139,6 £ 0,5 1,3£0,1 9.768,1 £ 39,9
512 0,0 £0,0 76,5 £ 0,2 0,5£0,0 5.648,1 £9.,8
1.024 0,0 £0,0 40,9 £ 0,1 0,2+£0,0 2995,3 +9,0
2.048 0,0 £0,0 224 £0,1 0,1 £0,0 1223,5 £ 6,6
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ceives from the environment. The experiments in Section 6.3
demonstrate that the victim goes from a free-of-attack context
to an under-attack context whenever an adversary begins to
inject attacks, and it is precisely this context change that must
be detected to prevent catastrophic consequences. Therefore,
this novel perspective opens the door to the application of
change-point detection approaches that are able to identify
changes in the transition and reward dynamics perceived for
the victim.

(ii) A novel model-free cluster-based detector. Clustering
of the transition space allows, on the one hand, not having to
know the transition and reward dynamics of the environment,
and, on the other hand, to transform a multi-variate detec-
tion problem into a more compact and tractable uni-variate
one as described in Section 5. This is a significant advan-
tage concerning other change-point detection approaches
[6,7, 28].

(iii) Exploitation of the coherence of the environmen-
tal dynamics. In contrast to the majority of the previous
works which, focus on detecting single adversarial obser-
vations, we analyze adversarial transitions. The evaluation
in Section 6.2 demonstrates that detectors focused on transi-
tions instead of single observations can capture the dynamics
of a sequential decision task. Therefore, transition-based
detectors exploit the coherence of the transition and reward
functions that make them better for adversarial attack detec-
tion in the context of RL.

(iv) Sensitivity of the proposed approach to the parameter
B. Obviously, the success of the proposed approach is subject
to the radius S defined for each of the clusters. It is manda-
tory to detect attacks as soon as possible in safety-critical
domains. So this paper suggests that this parameter should
be heuristically predefined before system deployment. In this
case, f is tuned as described in (6), but other initialization
could be investigated. Notwithstanding the above, we have
also analyzed the sensitivity of the detection approach to
B by using ROC curves (Section 6.4). ROC curves make
a sweep of the B values and return for each one the rate
of true and false positives. Therefore, we can easily choose
the best threshold after plotting the ROC curve. Such a pos-
teriori analysis could be interesting for non-safety-critical
domains.

(v) A complex attack is more difficult to detect. As we
show in the evaluation section, if the attack drives the victim
to undesired or unexplored states, the victim will generate
a higher amount of non-adversarial transitions, which our
detector classifies as adversarial ones. Therefore, the num-
ber of false positives increases, and the performance of our
detector decreases.

As future work, we would extend our approach to analyze
the performance of other change-point detection techniques.
We also would implement some methods to reconstruct the

attacked transitions to allow the victim to continue its trajec-
tory through its goal.
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