
The deterministic part of the seventh International Planning
Competition

Carlos Linares López1,∗, Sergio Jiménez Celorrio1, Ángel Garcı́a Olaya1

aComputer Science Department, Universidad Carlos III de Madrid. Leganés (Madrid) Spain

Abstract

The International Planning Competition is organized in the context of the International Confer-
ence on Automated Planning and Scheduling (ICAPS) and it is considered a reference source for
the planning and scheduling community. The competition is typically organized every two years
and deals with relevant issues for the community such as the definition of evaluation standards,
the publication of benchmarks and the collection and dissemination of data about state-of-the-art
planners. This paper focuses on the deterministic part, the longest-running part of the Interna-
tional Planning Competition. The paper describes its format, the participants, the selection of
benchmarks and the generated results accompanied with analysis from different perspectives.
The paper also examines the results of a brand new track created to explore the potential of
planners that exploit the power of multi-core processors. Overall, the results of the competition
indicated significant progress with respect to previous competitions, but they also reveal that
some issues remain open and need further research, such as the coverage of temporal planners
when concurrency is required and the performance in the multi-core track. As a novelty, all
the data and the software generated for running the competition have been made publicly avail-
able allowing researchers to reproduce the competition and to carry out different analysis of the
results.

Keywords: Automated planning, Planning systems, International planning competition,
Benchmarks for planning, Experimental evaluation of planning systems

1. Introduction

The International Planning Competition (IPC) has typically been held every 2 years in the
context of the International Conference on Automated Planning and Scheduling (ICAPS). The
main activity in the competition is evaluation of state-of-the-art planners by running them on a set
of planning problems and comparing their performance with some specific metrics. Although the
IPC is competitive and awards planners for their performance, the main goals of the competition
are collection and dissemination of data and definition of evaluation methodologies. In fact, the
IPC is used as a reference source when building a planner, and most new planning techniques are
evaluated by considering languages, benchmarks, and metrics defined in the IPC series.

∗Corresponding author
Email addresses: carlos.linares@uc3m.es (Carlos Linares López), sjimenez@inf.uc3m.es (Sergio

Jiménez Celorrio), agolaya@inf.uc3m.es (Ángel Garcı́a Olaya)
Preprint submitted to Artificial Intelligence December 12, 2014



Currently the IPC comprises three parts: (1) a deterministic part for evaluation of domain-
independent planners in deterministic and fully observable environments; (2) a learning part
for planners able to learn and exploit domain-specific knowledge in deterministic planning; and
(3) an uncertainty part for domain-independent planners able to plan under uncertainty. The
deterministic part has been the main focus of the IPC over the years and is the part addressed
in this paper. Details on the other two parts can be found in a survey paper [1] and on the IPC
website1.

After a 3-year gap, the seventh edition of the deterministic part intentionally provided con-
tinuity with the previous competition, IPC-2008, for easier comparisons and to build iteratively
on previous work that could benefit the community. For example, IPC-2011 was structured
using the same tracks as for IPC-2008 and preserved the same input language and evaluation
scores. Likewise, the competition reused domains and problems to better quantify progress in
the field. However, IPC-2011 also introduced several new planning domains and a large col-
lection of problems over these domains that can serve as a reference for future research. There
was special emphasis on the temporal track, and planning problems that require concurrency
(i. e., that at least two different actions have to be performed at the same time) were intentionally
included. With the aim of exploring new directions for planning research, the seventh edition
introduced a multi-core track that evaluates the performance of planners with algorithms able to
exploit multi-processor machines.

There were also similarities and differences with regard to the software used to run the com-
petition. Continuing the work achieved in IPC-2008, there were explicit efforts to highlight the
transparency and reproducibility of the results of IPC-2011. This involved the creation of a pub-
lic repository of all the software, benchmarks, and source codes for the participant planners,
along with short papers describing them and all the data generated. This public resource allows
researchers to validate the competition results using their own means for further analysis from
different perspectives.

The seventh edition of the deterministic part attracted a record number of 55 participants
grouped in 31 teams from 11 different countries: Australia, Canada, China, France, Germany,
India, Israel, Italy, Spain, UK, and USA. This is almost eight times the number of participants in
the first competition, IPC-1998, and double the number in the previous one, IPC-2008. The com-
petition results were presented at a special ICAPS session in July 2011. After the competition,
a more detailed analysis was performed to gain more insight into the results and possible causes
and consequences. In summary, the main contributions of the deterministic part of IPC-2011 are:

• A collection of new domains and their corresponding problem generators.

• A detailed evaluation of the relative performance of the IPC-2011 planners with respect to
new and previously used benchmarks.

• A new track for evaluation of multi-core planners.

• A public repository containing all the data produced during the competition and open-
source tools for running the experiments and analyzing the results.

• A detailed analysis of the competition results that provides insights into the performance of
state-of-the-art planners from different perspectives such as coverage, quality, CPU time,
and memory usage.

1http://ipc.icaps-conference.org/

2

http://ipc.icaps-conference.org/


The overall aim of this paper is to provide accurate answers to the following questions:

• What is being measured? The definition of the scoring schema and how it is affected by
the particular goal of every track is discussed in Section 2.3. The characterization of every
track is described in Section 2.1. The scoring schema adopted is critically analyzed in
Section 6 and various alternatives are examined.

• What are the benchmarks? Selection of the benchmark suite is a difficult problem that is
addressed in Section 3. The difficulty mainly arises from the need to select challenging yet
solvable problems and the fact that it might introduce bias, as discussed in Section 3.2 and
Appendix C.1.

• What are the results? The main results are presented in Section 4 and are compared with
the results from IPC-2008 and closely related tracks in Section 5.

• General questions and trends are summarized in Section 7.

The remainder of the paper is organized as follows. Section 2 describes the deterministic part
of IPC-2011 in terms of its format, the participants, and the evaluation schema. Section 3 reviews
the benchmarks used and details the mechanisms followed in the domain and problem selection.
Section 4 analyzes the competition results with respect to coverage, quality, raw speed, and
memory usage. Section 5 presents a scalability analysis. The performance of the top planners in
IPC-2011 is compared with that of the top planners in IPC-2008, and the performance of parallel
solvers is compared with their sequential counterparts. The scoring schema used is critically
analyzed in Section 6 and a number of alternatives are discussed. Section 7 summarizes with
a number of conclusions. A series of appendices are available online for further reference2.
Appendix A describes the participants for all the tracks. Appendix B provides additional details
about the selected domains. Appendix C presents results for additional experiments performed
once the competition was over. Appendix D shows a novel approach used to select problems that
were reused from previous IPCs. Appendix E provides additional details on the way in which
various statistical tests were conducted.

2. The deterministic part of the seventh International Planning Competition

One of the main aims in designing the deterministic part of IPC-2011 was to make the com-
petition as inclusive as possible. The benchmarks were set up to have low PDDL requirements,
mostly STRIPS plus simple use of numeric fluents. This fact, in conjunction with the public avail-
ability of the source code for the FAST DOWNWARD planning system3, made the deterministic
part of IPC-2011 extremely popular with a record number of entrants.

2.1. Format
The deterministic part of the IPC currently comprises three different planning models that

differ in expressiveness. In all cases the evaluation of planners is carried out by comparing
their performance with respect to the quality of the plans found. There are, however, different
definitions for quality according to the purpose of each model.

2Appendices are available at http://www.plg.inf.uc3m.es/˜clinares/ipc2011-apps.pdf.bz2
3http://www.fast-downward.org/

3

http://www.plg.inf.uc3m.es/~clinares/ipc2011-apps.pdf.bz2
http://www.fast-downward.org/


Sequential planning pursues the generation of a sequence of actions in deterministic and
fully observable environments. In sequential planning, quality is evaluated inversely to the total
cost of the solution, which is defined as the sum of the individual costs for all actions included
in the solution. Thus, maximization of quality corresponds to minimization of the total cost of
the solution plans. Planning with preferences involves the generation of plans when goals have
different strength requirements, for example, motivated by soft goals or trajectory constraints [2].
The objective of planners in this task is to maximize the total net benefit, that is, the difference
in penalties for not achieving some goals or not observing a number of constraints and the total
action cost. Finally, temporal planning involves the generation of solution plans when actions
have a duration and may temporarily overlap. In this case, plan quality is inversely related to
the makespan of the plan, that is, the temporal duration from when the first action is initiated to
when the last action is completed.

Similar to the 2011 SAT competition [3], IPC-2011 explicitly distinguished between the abil-
ity to use resources as efficiently as possible and the ability to provide fast solutions when using
all available resources. The first case corresponds to the case of sequential solvers, whereas
the second is explicitly designed for parallel solvers. Traditionally, all tracks of the IPC series
were sequential, but in 2011 a brand new track was created for evaluation of parallel solvers:
the multi-core track. In this track, all planners were given 30 min of wall-clock time regardless
of the number of processes and/or threads launched, whereas in the sequential tracks, planners
were given 30 min of CPU time in total. Nevertheless, parallel solvers were allowed to enter
sequential tracks since CPU time was accumulated across all processes and threads launched by
the solver, which resulted in reduced real times for parallel solvers.

Each planner was run on a single node of the cluster and no planner was allowed to use more
than a single dual core, except in the multi-core track, in which four dual cores were readily
available to speed up the processing. In all tracks, each planner was allotted 30 min per planning
task (either CPU time or wall-clock time) and a memory limit of 6 GB of RAM and 750 GB of
hard disk space.

All competitors were required to adhere to the syntax of VAL [4], which was used to retrieve
various statistics (e.g., the total cost of each solution, the number of valid solutions, the step
length of the plan) and to facilitate automated validation. In this regard, two criteria were set:

1. If a planner generated any invalid solution, it was disqualified for that particular problem
even if other valid solutions were generated.

2. For the sequential optimal track, if a planner generated any suboptimal solution, it was
assigned a null score for the whole domain.

2.2. Participants
The deterministic part of IPC-2011 received 55 submissions distributed among four different

tracks. Table 1 summarizes the number of planners covering different PDDL fragments for each
track. Different entries are counted separately even if they implemented different versions of the
same planner (e.g., FDSS-1 and FDSS-2).

Although PDDL3.1 was the input language for IPC-2011, none of the 55 entrants fully im-
plemented it. The vast majority of participants only supported the STRIPS subset besides typing,
simple numeric fluents, and the equality predicate. Less than half of the planners implemented
the full PDDL1.2 set, including the ADL requirements. None of the planners implemented
PDDL2.2 in full, with only 14 supporting derived predicates and only three supporting timed-
initial literals. Finally, only three planners from the temporal satisficing track implemented some
limited support of PDDL3.1, in particular numeric state variables.

4



Feature PDDL Satisficing Optimal Multi-core Temporal

Typed representations 1.2 27 12 8 8
Untyped representations 1.2 21 12 7 7
Schematic representations 1.2 27 12 7 8
Grounded representations 1.2 23 1 7 6
Negative conditions 1.2 16 1 6 0
ADL conditions 1.2 15 1 6 1
Conditional effects 1.2 15 0 5 1
Universal effects 1.2 18 1 5 2
Derived predicates 2.2 11 0 3 0
Time-initial literals 2.2 – – – 3
Numeric state variables 3.1 – – – 3
Object fluent representations 3.1 0 0 0 0

Total 27 12 8 8

Table 1: PDDL coverage of the competing planners and total number of entrants per track. A dash indicates that a feature
is not applicable in a particular track

Next we give an overview of participation in the different competition tracks. Fine-grained
details of the 55 participant planners can be found in Appendix A. For further details, interested
readers are referred to the short papers submitted by the authors of each planner, which are
available as a Technical Report [5].

Sequential track. The sequential track comprises an optimal track, in which planners must pro-
vide the best solutions in terms of the total action cost, and a satisficing track, in which
planners can provide suboptimal solutions.

For the sequential optimal track, 22 planners were registered and 14 were finally submitted,
of which two were later withdrawn, leaving 12 entrants. Ten out of the 12 participant
planers were built on top of FAST DOWNWARD, with pure heuristic search being the most
popular approach, followed by 8 out of 12 planners. The main difference among these
planners was in the search algorithms they implemented (A∗ and LM-A∗ used by 5 and 3
planners, respectively) and the admissible heuristic functions they used to guide the search
(hmax, LM-cut, Merge and Shrink, . . . ).

For the sequential satisficing track, 29 planners were registered, of which 27 were submit-
ted. Many of the planners submitted for this track implement anytime strategies that allow
improvements in the quality of the first plan found until the whole state space is exhausted
or the planning is terminated after the allotted time or memory is exhausted.

Multi-core track. Current computers with multiple cores are now affordable and some researchers
have already started to work on multi-core planning [6, 7, 8], so IPC-2011 introduced a
new track to evaluate their potential. Unfortunately, it was not possible to use a graph-
ics processing unit (GPU), which has shown promising performance [9]. The aim of this
track was to evaluate the performance of planners using multiple cores at the same time (in
contrast to a distributed environment, in which different computers can be used simulta-

5



neously) and observe whether they can outperform standard planners that traditionally use
only one processor.

Only a sequential satisficing track was arranged for the multi-core track.4 Ten planners
were registered, of which eight were submitted. Two of these, ACOPLAN and ROAMER-P,
were parallel versions of entries submitted to the sequential satisficing track. Among the
other six, MADAGASCAR and MADAGASCAR-P were exactly the same planners as those
submitted to the sequential satisficing track, and two planners exploited the multi-core set-
ting by running a number of independent searches in parallel. Specifically, one planner
implements dove-tailing (simultaneous runs of the same algorithm with different parame-
ter settings) on a frontier search procedure. The other planner simultaneously runs different
members of an algorithm portfolio. The remaining two planners parallelize widely used
planning algorithms, such as enforced hill-climbing and best-first searches, by implement-
ing parallel procedures for evaluating and expanding nodes.

Temporal track. In this track, planners are required to find a valid solution to a planning task
that involves durative actions that might temporarily overlap or interfere. It has already
been noted that temporal planning can be computationally more complex than classical
planning [10] and thus a separate track was arranged for this context.

Twelve planners were registered but only eight were submitted. Evaluation of this track in
IPC-2011 focused on a conservative fragment of temporal planning according to PDDL2.1
semantics that included durative actions with and without a concurrency requirement. Only
two planners (POPF2 and LMTD) provided concurrency support.

Preferences track. As in IPC-2008, a preferences track for IPC-2011 was announced and later
canceled because four planners were registered for the satisficing track but only one was
submitted. Likewise, six planners were registered for the optimal track but only one was
submitted.

This may be not a coincidence since effective compilations for planning with preferences
have recently appeared that transform some preference planning tasks into classical plan-
ning tasks [11], with better results than those of planners tailored for this track, at least
in the optimal setting. Participation in the preferences track requires handling of complex
parts of PDDL (e.g., full support for fluents or disjunctive goals). In addition, many of the
participants who registered for this track were also participating in the sequential tracks,
so they may have eventually decided to concentrate on the latter.

2.3. Evaluation

Since its conception, the IPC has aimed to provide the planning community with standard
mechanisms that objectively and reliably evaluate the performance of different planning tech-
niques for easier comparability. Throughout the IPC series, different evaluation schemes have
been proposed to score and rank planners and after seven editions this ideal has proved to be
a difficult challenge. The difficulty lies in the nature of planning, which lends itself to a num-
ber of very diverse and often conflicting evaluation criteria from straightforward binary success

4From the start, this track was devoted to non-optimal planning and therefore the term sequential satisficing multi-
core might be more appropriate. However, since there was no sequential optimal multi-core track, the term satisficing is
omitted here.

6



measures (such as finding a solution or proving that there is none) to optimization along many
different dimensions. Furthermore, the evaluation has to measure the domain independence of
planners, quantifying their versatility for different classes of problems across different domains.
Therefore, planner performance can be analyzed from different perspectives, such as the number
of problems solved, CPU time, plan length, total cost, makespan, or other features such as the
diversity or flexibility of the solutions. For this reason, selection of the best planner necessarily
depends on the context in which it will be used.

An important consideration in IPC-2008 was that quality, defined inversely to the total cost
of a plan, is widely regarded as a useful measure in most contexts. From a theoretical point
of view, finding a solution is not the only interesting challenge, and improving over previous
solutions has received much attention in the literature [12, 13]. From a practical point of view,
although faster identification of solutions is a primary concern in some real-world applications,
finding good solutions is also relevant, especially if the cost of the plans is directly related to
important features such as time or economic costs so that large time horizons are allowed for
planning. The deterministic part of IPC-2011 continued with the same evaluation scheme defined
for the previous edition. This focuses on good plan quality, with less emphasis on the number
of problems solved or the CPU time used. Accordingly, if two planners find solutions within the
same time and memory bounds, the plan with the lower cost is awarded a better score. This is
not applicable to the optimization track, for which all solutions are expected to have the same
cost and thus only the number of solutions found (or coverage) is relevant for the final score.

For IPC-2011, all planners were given the same time and memory cutoffs (1800 s and 6 GB
of main memory) and were required to find valid solutions with the best quality. For a particular
planner with regard to a given planning task, quality is defined as the ratio of the lowest total
cost (computed as the sum of the costs of all individual actions included in a solution plan) to the
total cost of the best solution found. Thus, each planner p gets a score per planning task i, S p

i ,
expressed as

S p
i =

C∗i
Cp

i

,

where Cp
i is the total cost of the best solution found by planner p for instance i, and C∗i is the

lowest total cost found so far by any planner for the same problem, that is, C∗i = minp{C
p
i }. The

final score for each planner, S p, is computed as the sum of the scores obtained in every planning
instance, aggregating scores among domains of the same track, S p =

∑
i S p

i . Obviously, scores
were not aggregated among tracks since they were considered as separate competitions.

No optimal solver was built for any domain and thus all the scores computed in this way
rely solely on the total cost of the plans found by the different competitors. Although the final
scores might change in the light of the true optimal scores (even resulting in different rankings for
planners), the results and conclusions drawn here are expected to be robust. Section 6 discusses
the current scoring schema and analyzes alternatives.

Although the score is computed considering only the quality of solutions, coverage and CPU
time are arguably implicit to some extent. On the one hand, unsolved problems are scored as 0,
so that coverage is acknowledged by the score function. On the other hand, all planners were
given 30 min per planning task, so that planners that quickly identify solutions can dedicate more
time to improving the quality of the initially produced plans. Next we discuss how the scoring
function behaves in every track.

7



Sequential track. In the case of the sequential optimizing track, the score function equals cov-
erage, or the number of problems solved: each planner is awarded one point for every
problem solved, and zero otherwise.

In the case of the satisficing track, the score function maps the quality of every planner in
the range [0, 1] inversely to the total cost of its solutions, using the best known solution as
a reference.

Multi-core track. Planners in this track were scored using the same schema as for the sequential
satisficing track.

Temporal track. In this track there is no notion of total cost, although costs can of course
be defined in general for temporal planning. Instead, quality is defined inversely to the
makespan of every solution: S p

i =
M∗i
Mp

i
, where Mp

i denotes the makespan of the best solu-
tion found by planner p for instance i, and M∗i is the shortest makespan found so far by
any temporal planner for the same problem.

The first and second best-ranked planners were picked as the winner and runner-up, respec-
tively, although additional considerations were scored according to a judgment call, in particular
in the sequential satisficing and temporal satisficing tracks (Sections 4.3.4 and 4.5.4).

3. Benchmarks

Researchers are increasingly evaluating their results with regard to the benchmark selection
of the IPC series. Therefore, this selection is an important issue not only for the competition itself
but also for the planning community. Ideally, the IPC benchmarks should cover different ranges
for the structure and difficulty of problems. However, guaranteeing this coverage is complex
because of the lack of domain-independent techniques for assessing the diversity and difficulty
of planning problems.

Similar problem-solving competitions, such as the SAT competition, address this issue for
random track-generating benchmarks using random synthetic problems of varying difficulty. The
phase transition of such SAT instances is well known [14] and progress is then often measured
in this particular track in terms of the size (number of variables and clauses) of the formulas
that can be tackled. Unfortunately, this is not true for other tracks of the same competition,
such as the structured/application tracks. Similarly, the case of automated planning is complex
because the branching factor and the depth of the planning problems are not easily bounded with
the number of state variables. Although a phase transition has already been demonstrated in
automated planning [15, 16, 17], it is relative only to random graphs that have never been used
in previous IPCs. In general, not much is known about what makes some problems particularly
harder than others, although some research has been carried out [18, 19].5

In other competitions, such as the Answer Set Programming competition, the organizers aim
to provide a balance between problem categories such as search, query, and optimization cov-
ering different computational complexity classes such as polynomial, NP, and Beyond NP [20].
This classification is very difficult in automated planning, for which a better known result is that

5This is not to say, however, that random graphs cannot be used in the IPC; indeed, it might be a good idea to do so,
although none was used in IPC-2011.

8



classical planning is PSPACE-complete [21] (even in very restricted cases), so that the complex-
ity analysis falls in a case-by-case analysis [22, 23]. Other studies have analyzed the structure
of planning domains regarding a particular search configuration with promising results, such as
creating taxonomies of domain classes under the heuristic function h+ [24, 25] or others [26].
Finally, in other cases, such as the CSP competition, the organizers only select problems that can
be solved by at least one of the participants in a sensible time frame, and a somewhat related
approach was followed in IPC-2011 (Section 3.2 and Appendix D).

Another consideration when building the IPC benchmarks is the inclusion of real-world prob-
lems [18]. The difficulty here arises from the shortage of applications that use standard PDDL.

With all this in mind, the final design of the IPC-2011 benchmarks was motivated by three
goals: (i) to evaluate the domain independence of planners; (ii) to assess the evolution of plan-
ners since IPC-2008; and (iii) to provide interesting domains for the planning community. In
accordance with these objectives, there was special emphasis on evaluation of planners over a
large number of different domains instead of over a large number of planning tasks from a re-
duced number of domains. In addition, a good number of domains and problems were reused
from the deterministic and learning tracks of IPC-2008, but new domains were also included in
response to a public call for domains. Finally, challenging test sets for state-of-the-art planners
of increasing difficulty were designed. The remainder of this section surveys the domains and
problems selected. Further details on the particular domains and problems generated for each
domain are in Appendix B.

3.1. Selection of domains
The benchmarks of IPC-2011 comprised 19 different domains: 14 domains in the sequen-

tial optimal, satisficing, and multi-core tracks, and 12 domains in the temporal satisficing track.
Eleven domains were reused from previous competitions, and eight new domains were intro-
duced for the first time. Among the new domains, six were collected in response to a public call
for domains, and two, BARMAN and TURNANDOPEN, were created by the organizers. In contrast
to the practice in previous competitions, there was a single PDDL definition per domain because
most of the planners submitted only supported basic PDDL requirements (Table 1, page 5). The
IPC-2011 organizers believed that efforts to make different versions would not be worthwhile
because few planners would have benefited.

Tables 2 and 3 show the domains used in IPC-2011 for the sequential and temporal tracks,
respectively, along with their PDDL requirements. Domains shown in bold font were used in all
tracks. All the domains use at most STRIPS plus actions costs and action durations in the temporal
track. In the sequential tracks, eight domains were reused from the deterministic track of IPC-
2008. Another domain (PARKING) was from the learning track of IPC-2008 and five domains
were new. Four of the 14 domains are inspired by real applications (ELEVATORS, PARCPRINTER,
SCANALYZER and TRANSPORT), while the remaining 10 explore different structures of planning
problems.

The new domains were especially created to challenge specific planning techniques. In the
sequential track we introduced NOMYSTERY, BARMAN, PARKING, FLOORTILE and VISITALL
to challenge diverse weaknesses of the delete-relaxation heuristics. The management of limited
resources is a key issue in automated planning however the delete-relaxation ignores resource
consumption producing optimistic estimations of limited benefit in resource-constrained prob-
lems. More precisely delete effects in the NOMYSTERY domain encode the fuel consumptions
of shippings; they encode the fact that robot hands can only grasp one object at a time and that
glasses need to be clean before being filled in the BARMAN domain and, in the PARKING domain,

9



Domain name Origin PDDL requirements

BARMAN New :typing :action-costs
ELEVATORS IPC-2008 :typing :action-costs
FLOORTILE New :typing :action-costs
NOMYSTERY New :typing :action-costs
OPENSTACKS IPC-2006 :typing :action-costs
PARCPRINTER IPC-2008 :typing :action-costs
PARKING IPC-2008 (learning) :typing :action-costs
PEGSOL IPC-2008 :typing :action-costs
SCANALYZER IPC-2008 :typing :action-costs
SOKOBAN IPC-2008 :typing :action-costs
TIDYBOT New :typing :equality
TRANSPORT IPC-2008 :typing :action-costs
VISITALL New :typing
WOODWORKING IPC-2008 :typing :action-costs

Table 2: Domains used in IPC-2011 for the sequential optimal, satisficing, and multi-core tracks. Domains shown in
bold font were also used in the temporal satisficing track.

delete effects encode when curbs are available for parking. In addition the FLOORTILE domain
was introduced because its dead-ends are difficult to recognize with a delete-relaxation heuris-
tic and the VISITALL domain was introduced because of its conflicting goals where progressing
towards one goal means moving away from the others so that large plateaux are produced when
using delete-relaxation heuristics.

The TIDYBOT domain was introduced with a different motivation, the increasing interest
in re-approaching the fields of AI planning and autonomous robotics. State-of-the art planners
fail to address problems with large state spaces, like the motion planning problems typically
addressed in robotics. The TIDYBOT domain models a household cleaning task that involves
motion planning and task planning in which one or more robots must pick up a set of objects and
put them into goal locations.

In the temporal track there were four new domains and eight domains from previous IPCs
(six from IPC-2008, one from IPC-2006, and one from the learning track of IPC-2008), although
some of them had to be adapted to the requirements supported by the competing planners. In this
case, four domains are also inspired by real-world applications (CREWPLANNING, ELEVATORS,
PARCPRINTER, and TMS). The IPC-2008 domains MODELTRAIN, TRANSPORT, and WOOD-
WORKING were not reused as they require :numeric-fluents, which is not supported by
five out of the eight temporal planners.

Most temporal domains in previous competitions were temporally simple, in the sense that
they did not require concurrency and problems could be solved by a pure sequential planner [27].6

The IPC-2011 benchmarks intentionally included three new domains, MATCHCELLAR, TMS, and
TURNANDOPEN, in which all possible solutions require concurrency of actions. In particular, in
the MATCHCELLAR domain, a set of fuses have to be mended in the light of a match. In the

6Notable exceptions are the time-timewindows-compiled versions of the domains Satellite, UMTS, and Pipesworld–
NoTankage introduced in the fourth IPC.

10



Domain name Origin PDDL requirements

CREWPLANNING IPC-2008 :typing :durative-actions
ELEVATORS IPC-2008 :typing :durative-actions
FLOORTILE New :typing :durative-actions
MATCHCELLAR New :typing :durative-actions
OPENSTACKS IPC-2006 :typing :durative-actions
PARCPRINTER IPC-2008 :typing :durative-actions
PARKING IPC-2008 (learning) :typing :durative-actions
PEGSOL IPC-2008 :typing :durative-actions
SOKOBAN IPC-2008 :typing :durative-actions
STORAGE IPC-2006 :typing :durative-actions
TMS New :typing :durative-actions
TURNANDOPEN New :typing :durative-actions

Table 3: Domains used in IPC-2011 for the temporal satisficing track. Domains shown in bold font were also used in the
sequential tracks.

TURNANDOPEN domain a robot must turn the doorknob and push the door at the same time to
navigate through rooms and in the TMS domain diverse pieces of ceramic have to be baked and
treated while a kiln is on fire. These domains present a greater challenge to temporal planners,
and the organizers recognized this by giving a runner-up award to the planner with the best
performance in these domains (Section 4.5.4).

Other people contributed with additional domains that were not included in the final version.
The main reason for discarding them was that they required fragments of PDDL that only a few
competing planners (if any) were able to support. Although these domains were not used in the
final version of the competition, they are available on the competition website7 with a detailed
description and the specific reasons why they were discarded.

3.2. Selection of problems

The IPC-2011 benchmarks consists of 20 problems per domain. This number is smaller
than in previous competitions, but the total number of problems is compensated by including
a larger number of domains. For example, IPC-2008 had six, eight, or nine domains per track
with 30 problems each, resulting in an overall number of planning tasks ranging from 180 to
270. However, IPC-2011 had 20 planning tasks in 12 or 14 different domains per track, resulting
in an overall number of instances ranging from 240 to 280. In all, the IPC-2011 benchmarks
comprised 800 problems distributed as follows: 280 problems for the sequential optimal track,
280 for the sequential satisficing and multi-core tracks, and 240 for the temporal satisficing track.

From a general point of view, every track poses different challenges that should be taken into
account. For example, although there is no difference in theoretical complexity in the general
case, optimal planning is harder than satisficing sequential planning in practice [22, 28]. There-
fore, planners in both tracks were evaluated over the same collection of domains, but problems
for the optimal track were carefully selected to be easier to solve. In addition, to facilitate direct

7http://www.plg.inf.uc3m.es/ipc2011-deterministic/NonUsedDomains

11

http://www.plg.inf.uc3m.es/ipc2011-deterministic/NonUsedDomains


comparisons, planners in the multi-core track were faced with exactly the same planning tasks
used in the sequential satisficing track (Section 5.2).

In each track, problems with increasing difficulty were selected so that they would be chal-
lenging (but not impossible) for state-of-the-art planners. This criterion requires identification of
the transition between solvable and non-solvable problems (from a practical point of view and
not whether they can be actually solved or not) for each domain and track for current state-of-
the-art planners. Although the number of objects in a planning problem has been widely used
as a weak measure of difficulty, there is currently no effective domain-independent procedure
for characterizing the difficulty of problems for a given set of planners, other than attempting
to solve them and to look at the results, as in the CSP competition. This approach would re-
quire a preliminary IPC to select problems for the official IPC, which, given the large number of
participants, was intractable.

Therefore, two different methods were adopted for selection of problems, depending on
whether data on their difficulty were available (e.g., when using problems from previous IPCs).
Arguably, both approaches assume that the transition from solvable to non-solvable for IPC-2011
competitors would be close to the transition experienced by a different set of planners.

For the new domains introduced in IPC-2011 we developed (or asked domain creators to
develop) a problem generator for each domain. The parameters of these generators tune the
structure and size of the problems. Typically, the parameters vary the number and type of world
objects and the number of goals to achieve. It should be noted that the parameters of the gen-
erators are domain-specific, so they cause variations in complexity that differ across domains.
Using these generators, reduced test sets of problems were created for solving by planners that
were state of the art at recent IPCs: LAMA-2008 [29], LPG [30], and FF [31]. Problems with an
increasing number of objects and goals were generated for solving within a 300-s time limit. As
a general rule, the easiest problems of IPC-2011 had similar characteristics to those that were
solved in tens of seconds in these limited runs. The most difficult problems were similar to those
that were not solved in 300 s by LAMA-2008, LPG, and FF. Therefore, tuning of parameters
to generate the competition problems was mainly a trial-and-error procedure. In fact, in some
domains (such as FLOORTILE and VISITALL), the entire set of problems had to be regenerated
several times as they were either too easy or too difficult for the IPC-2011 planners. This ap-
proach heuristically avoided a blind search in the parameter space for the problem generators.

Unavoidably, the selection of planners cited above introduces a bias towards those instances
that are solvable by precisely those planners, which favors entrants that implement similar ap-
proaches, such as heuristic planning. However, there is no guarantee that they will be equally
hard for planners that implement different techniques, such as SAT. Specifically, if planner Y
solves a domain D much more effectively than planner X, then the performance delta between Y
and X will appear small if most instances from D are selected such that X can still solve them;
by contrast, if X is much better in D and most instances from D are selected such that X can still
solve them, then the delta to Y will appear very large. Therefore, if other planner types had been
used to test the problems, the particular planning tasks chosen would have been different. An
illustrative example is the case of MADAGASCAR-P, which does not implement heuristic search
and solves all instances in the PEGSOL domain in less than 4 s, far faster than its competitors.
Once the competition was over, its author fixed a couple of bugs that improved its performance
dramatically, so that all instances in the FLOORTILE domain could be solved in less than 1 s,
whereas other planners such as LAMA-2011 and PROBE solved only six and five instances, re-
spectively. Other domains for which the corrected version of MADAGASCAR-P excelled are PAR-
CPRINTER and WOODWORKING. As additional evidence of the bias introduced by our selection

12



mechanism, LAMA-2011 and PROBE solved either 19 or 20 planning tasks in the domains BAR-
MAN, PARKING, and VISITALL, whereas neither MADAGASCAR nor MADAGASCAR-P succeeded
in solving a single instance. Summarizing, if harder instances would have been selected from
the domains PEGSOL, FLOORTILE, PARCPRINTER or WOODWORKING the delta performance of
MADAGASCAR-P would have been more noticeable. On the opposite side, the selection of prob-
lems from the domains BARMAN, PARKING and VISITALL clearly harmed the assessment of the
performance of MADAGASCAR-P. Appendix C.1 provides further details.

For domains used in the previous competition, we used publicly available data to rank plan-
ning tasks in ascending order of expected difficulty. Again, the resulting ordering should be
expected to be significantly biased towards the planners used in IPC-2008, although the bias
should be expected to be smaller because the number of planners used is greater and there is
more heterogeneity. There are many ways to rank the expected difficulty of planning tasks, the
most evident one being the number of planners that solved them. We tried to use a more informa-
tive measure that took into account which specific planners solved which problems based on the
Glicko rating system [32]. Appendix D gives more information about the procedure followed.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
e
r 

o
f 
p
ro

b
le

m
s
 s

o
lv

e
d

Number of planners

seq-opt subtrack

solved
accumulated

solved at least

(a) Sequential optimal track

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 5 10 15 20 25

N
u
m

b
e
r 

o
f 
p
ro

b
le

m
s
 s

o
lv

e
d

Number of planners

seq-sat subtrack

solved
accumulated

solved at least

(b) Sequential satisficing track

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 1 2 3 4 5 6 7 8

N
u
m

b
e
r 

o
f 
p
ro

b
le

m
s
 s

o
lv

e
d

Number of planners

seq-mco subtrack

solved
accumulated

solved at least

(c) Sequential multi-core track

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 1 2 3 4 5 6 7 8

N
u
m

b
e
r 

o
f 
p
ro

b
le

m
s
 s

o
lv

e
d

Number of planners

tempo-sat subtrack

solved
accumulated

solved at least

(d) Temporal satisficing track

Figure 1: Problems solved by different numbers of competitors in the four tracks of IPC-2011. The y-axis denotes
the number of problems solved and the x-axis shows the number of planners. Three series are shown: the number of
problems solved by exactly x planners; cumulative values; and the number of problems solved by at least x planners.

Figure 1 shows the number of planners that solved a particular number of problems consider-
ing the whole benchmark, that is, those that were reused according to the procedure described in
Appendix D and the new problems. As a result of the methodology used, we expected the results
to fit a normal distribution. In other words, we expected many problems to be solved by several

13



planners and fewer problems to be solvable by only a few planners or all of them, corresponding
to the two tails of a normal distribution. These desirable properties were observed for all the IPC-
2011 tracks except the sequential optimal track. In this case, many problems were not solved by
any competing planner, and many problems were solved by many entrants. In our experience,
selecting problems for this track seems to be very challenging, mainly because planners scale
worse in this track, which reduces the maximum level of problem complexity they can handle.
Thus, selection of structurally different problems becomes harder and problems tend in general
to be more similar in terms of difficulty than in the other tracks: either they are not solved at
all or a large number of planners solve them, as evidenced, for example, by the results for the
BARMAN domain.

4. Results

Apart from the quality of the solutions, typical parameters used to compare planner perfor-
mance in previous IPCs include the number of instances solved (or, alternatively, the overall
problem solving success rate, defined as the percentage of problems solved8), and the raw speed
at which solutions were generated. In this section we consider all these parameters and an ad-
ditional one, memory management. Examining memory usage is important. Most planners go
through a preprocessing step that instantiates all operators and predicates and incurs memory
overheads, which can worsen significantly when taking into account that best-first search strate-
gies are widely used. In addition, some planners can create particular structures to guide the
search, such as BDDs [34], or abstractions that have high memory demands [35]. Finally, since
a planner can return invalid solutions, VAL [4] was used and the percentage of invalid solutions
is also reported for all tracks.

As well as figures showing results for coverage, quality, raw speed, memory usage, and the
percentage of invalid plans, the analysis involved a number of statistical tests. A detailed descrip-
tion of these tests is in Appendix E. We tried to avoid the phenomenon known as p-hacking by
explicitly reporting how we determined our sample size, all data exclusions, all manipulations,
and all measures in the study [36]. Sample selection is explained in Section 3 and Appendix B;
data exclusions and manipulations are discussed below; and measures are detailed in the sub-
section for each track.9 The results for the statistical tests should be interpreted as a measure
of effort with regard to the benchmarking and parameter selection, and thus they cannot neces-
sarily be easily generalized to other problems or parameters. For this, further studies should be
conducted such as reporting effect sizes, confidence intervals or looking at the variance of per-
formance using bootstrap resampling. In other words, they are used solely to support the final
conclusions for particular benchmark and parameter selections.

An important observation is that all statistical tests involve pairwise comparisons of two
samples. This raises the question of how to deal with cases in which an entry has an unknown
value. Although this is not the case when comparing the number of instances solved (since each
planning instance is assigned a value per planner: it is either solved or not) or memory usage
(even if a planner does not succeed in solving a problem, memory consumption can still be

8In the fourth IPC, research teams were allowed to decide what problems to attack. Thus, the summary of results also
includes the attacked ratio [33]. IPC-2002 also prominently featured something akin to an attacked ratio. However, it is
ignored here, since all entrants were faced with all problems in this edition of the IPC.

9A detailed description is also available in the RESULTS section of the competition website (http://www.plg.
inf.uc3m.es/ipc2011-deterministic/Results).

14

http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results


monitored), this situation arises when observing quality and raw speed, since one planner might
not solve a particular planning instance whereas the other does. This issue has been managed in
a variety of ways in the past and in the following we refer to the analysis conducted for the third
and fifth IPCs.10

One solution consists of assigning an arbitrarily bad quality score or runtime to instances that
were not solved. Another solution involves conducting alternative statistical tests but considering
only double hits, or pairwise associations for which both values of the same variable (either
quality or runtime) refer to solved instances. In the third IPC, double hits were used in addition
to ordinary analysis when studying plan quality; when observing runtime, the organizers assigned
an infinitely bad speed to the planner that did not solve a particular case [37]. The organizers
of the fifth IPC adopted a different, but similar, methodology: when comparing runtime they
assigned twice the time limit to cases for which no solution was generated, observing that this
was the minimum value for which the performance gap for a problem solved by one planner and
not solved by the other is greater than the performance gap for any problem solved by both. In
their statistical analysis of plan quality, they partly adhered to the same recommendations made
earlier and considered only double hits [38].

In our analysis of the IPC-2011 results, we tried to encompass both approaches, although
there are some differences. When analyzing raw speed we conservatively assigned 1800 s (the
maximum time allotted for solving each instance) to cases that were unsolved. This amounts
to assuming that every planner eventually solves every instance. This diminishes the effect of
coverage and reduces the chance of obtaining a significant difference, which is a desired effect
since the study refers only to raw speed. However, when examining plan quality we considered
only double hits. The reason is that in preliminary analysis conducted over all pairs of problems
(and assigning infinitely bad quality to cases that were unsolved), we observed a significant in-
fluence of coverage, which dramatically favored participants that solved more problems. Indeed,
we observed a nearly perfect correlation between coverage and the ordering suggested by the
results of that analysis.

4.1. Format of the results presentation

The following subsections introduce the main analysis findings for the results in each track.
Each subsection starts by analyzing coverage and the official IPC metric. When examining the
number of instances solved, the evolution over time is plotted to provide empirical evidence of the
influence of the time bound. These data provide an overall assessment of the ability of planners to
produce fast responses if plan quality is ignored. The profile of these curves increases every time
a new solution is found. Therefore, they provide an indication of whether a planner solves more
problems at any particular time instant, although they give no information about the particular
instances been solved. In addition, a steep slope indicates that a planner is able to solve plans at
a fast pace in a short time.

Raw speed and memory usage are then examined in detail. Typical memory management
strategies are discussed and exemplified for selected cases. The distribution of (peak) memory
usage is also plotted as a function of the number of planning instances. These plots were gen-
erated considering only instances that were successfully solved. This curve is more informative
because the last point on the x-axis represents the coverage of every planner and it provides a bet-
ter view of the number of problems that each planner can be expected to solve for a given amount

10By contrast, the organizers of the fourth IPC made manual comparisons by examining the resulting data.
15



of memory. It should be noted, however, that measuring memory usage is not straightforward
and a number of subtleties should be taken into account. On one hand, Linux implements a
lazy allocation/deallocation policy that might produce false results from time to time, and this
observation applies to all tracks. For planners that start various processes (and the sequential
multi-core in particular), the IPC-2011 software computed the memory used by one particular
planner as the sum of the memory used by all of its subprocesses, even if they are sharing data,
such as libraries or private data. In addition, the limit imposed on memory usage for one process
is inherited by its subprocesses, along with all the descriptors used by the parent, but the operat-
ing system allows the newly generated process to allocate space on a different segment provided
that no process exceeds its own limit. However, the overall memory usage can exceed the orig-
inal limit. These observations are particularly important, as shown in Sections 4.3.3 and 4.4.3
when analyzing data generated in the sequential satisficing and multi-core tracks, respectively.

The results for different statistical analyses are presented in digraphs that show partial orders
of dominance between planners. In these graphs, each vertex is a planner and there is an edge
between planner A and B if and only if A statistically dominates the performance of B with regard
to the random variable under study for a given confidence level. When dominance is detected
at confidence level α = 0.001, a solid edge is drawn. Alternatively, if dominance is found at
a less restrictive confidence level of α = 0.005, the edge is dashed. The absence of a simple
path from A to B indicates that no statistically significant relationship was found between them
and therefore that no transitive ordering can depend on such a relationship. When considering all
instances, the resulting dominance graphs are necessarily acyclic since all edges refer to pairwise
comparisons over the same benchmarking set. However, this is not true when using only double
hits, and acyclicity cannot be enforced. All these statistical tests are described in Appendix E.

Finally, each subsection ends with a justification of the winner and runner-up selected in each
track.

4.2. Performance of the sequential optimal planners

As mentioned in Section 2.3, no optimal specific solver was developed for any domain and
thus there is no assurance that the solutions provided were always optimal. However, it was
noted that the solutions for each instance always had the same total cost, and this was true for
all planners that successfully solved the instances. Therefore, it is reasonable to assume that all
planners behaved as expected and found optimal solutions.

4.2.1. Number of problems solved and quality
Table 4 lists the number of problems solved and the success rate for each planner in de-

scending order. Since we checked that all correct solution plans had the same quality, the score
assigned to each planner and planning task can only take a value of 0 (unsolved or invalid) or
1 (optimally solved). Hence, the final score for each planner equals the number of problems
it solved. Therefore, Table 4 also shows the final score for every entry. In this track, invalid
solutions were almost never generated apart from a couple of exceptions: CPT4 generated three
invalid solutions in the PEGSOL domain and one in the SOKOBAN domain.

Figure 2 shows results for the statistical test on coverage. The results differentiate four
groups. The first group comprises the two top-ranked planners, which solved 185 and 182 prob-
lems, respectively. The second group consists of planners that were able to solve between 158
and 169 problems, and GAMER, which solved 148 instances. The third group contains planners
that solved between 144 and 151 tasks, except for GAMER. The last group comprises only the

16



FDSS-1 FDSS-2 SELMAX M&S LMCUT FD-AUTOTUNE
Solved 185 182 169 169 167 166
Success rate 66.07% 65.00% 60.35% 60.35% 59.64% 59.28%

FORKINIT BJOLP LMFORK GAMER IFORKINIT CPT4
Solved 158 151 148 148 144 44
Success rate 56.42% 53.92% 52.85% 52.85% 51.42% 15.71%

Table 4: Number of problems solved and success rate for the sequential optimal planners.

FDSS-1

FDSS-2

FORKINIT

MERGE & SHRINK

LMCUT

FD-AUTOTUNE

GAMER

SELMAX

LMFORK

IFORKINIT

BJOLP

CPT4

Figure 2: Partial order for planner performance in the sequential optimal track in terms of successfully solved problems
according to the binomial test with p = 0.5.

CPT4 planner, which solved 44 problems. The results are not surprising and endorse the idea that
optimal planners that solve more problems are superior; however, some insights are obtained.
There are no significant differences (at the highest confidence level) in the performance of plan-
ners in the same group; this is attributed to chance when using a high confidence level. In fact,
when comparing the number of problems simultaneously solved by two planners in the same
group, it was found that either the difference is too small to be significant (e.g., FDSS-1 solves
the same problems as FDSS-2 and only three additional ones) or is slightly larger but the inter-
section is rather low (e.g., GAMER and FORKINIT solve 148 and 158 problems, respectively, of
which 119 are solved by both). This is not the case when comparing planners in different groups.
The usual case is that one planner dominates the other and solves a high percentage of the prob-
lems solved by the other; for example, SELMAX solved 169 problems, of which 167 were solved
by FDSS-2, while FDSS-1 solved them all.

4.2.2. Analysis of CPU time
Figure 3 shows the evolution of the number of problems solved by all entrants in the time

interval (0, 1800] s. Although SELMAX performs worse than a number of planners at the start, it
performs as well as MERGE-AND-SHRINK at the end of the interval and moderately better than
LMCUT and FD-AUTOTUNE. However, all these planners, along with IFORKINIT, perform more
or less equivalently between 20 and 200 s, with the latter showing a comparative decrease in
performance after the first 100 s. In particular, it falls below the two variants of FDSS at t = 122
s and clearly below the group of leading planners in performance at t = 251 s. The case of
GAMER is untypical. It shows a spectacular improvement in score in the middle of the time

17



(a) The six top-ranked planners (b) The six bottom-ranked planners

Figure 3: Evolution of the number of problems solved over time in the range [1, 1800) s. The x-axis is shown on a
logarithmic scale.

FDSS-1

FDSS-2

MERGE & SHRINK

LMCUT

IFORKINIT

FD-AUTOTUNE

BJOLP

SELMAX

CPT4

GAMER

LMFORK

FORKINIT

Figure 4: Partial order for planner performance in the sequential optimal track for time taken to find the solution according
to the Wilcoxon signed-rank test.

range considered. The reason is that this planner spends half of the available time in non-unit
cost domains building a pattern database (PDB) (with abstraction in some cases and without in
others) with a symbolic backwards breadth-first search. If the start state is found while building
the PDB and no abstraction was used (i.e., a perfect mapping is used instead) the optimal solution
is displayed immediately. Otherwise, more searching is needed and when the 15-min period is
over, the planner starts a symbolic forward search from the initial state using the information in
the PDB. Hence, it is very tempting to regard all problems solved by GAMER during the first 900
s as relatively easy. At t = 896, GAMER had solved 81 problems, and then it solves 59 additional
tasks in just 163 s, performing equally well as LMFORK from this timepoint onwards.

Figure 4 shows the results of the Wilcoxon signed-rank test for run time. The two variants
of FAST-DOWNWARD STONE-SOUP are considered to be the fastest, followed by MERGE-AND-
SHRINK. A plausible explanation is that this is an effect of the coverage of these planners since
the statistical test considers all instances. An alternative statistical test conducted using only
double hits concluded that FDSS-1 is faster than MERGE-AND-SHRINK, which is faster than
FDSS-2. This is a counterintuitive result, since these planners are portfolios that consist of a
collection of solvers that are invoked in succession. However, although SELMAX was able to
solve problems at faster pace than other planners, especially in the second half of the allotted

18



Figure 5: Examples of typical memory profiles observed in the sequential optimal track. The figure shows the memory
profile of the portfolios FDSS-1 and MERGE-AND-SHRINK, and the planners SELMAX and GAMER for solving problem
018 of the WOODWORKING domain.

time, LMCUT and FD-AUTOTUNE (which solved roughly the same number of problems) were
faster than it at a confidence level of α = 0.001. The reason is that during the first 30 s, LMCUT
and FD-AUTOTUNE solve problems faster than SELMAX does, and the number of problems solved
in this interval amounts to 66.3% of the problems solved by the end. From this point on, SELMAX
solves slightly more problems than FD-AUTOTUNE does, but it is not until t = 80 that SELMAX
catches LMCUT, with more than 75% of the problems solved. The case of GAMER, as anticipated
above, is particularly interesting and the Wilcoxon signed-rank test indicates that it is slower than
all the other entrants except for CPT4.

4.2.3. Analysis of memory performance
Typically, planners use memory incrementally according to a monotonically increasing pro-

file. However, other strategies for memory management have been identified. With the advent
of portfolios (such as the FAST-DOWNWARD-STONE-SOUP family and MERGE-AND-SHRINK),
memory can be used and released according to the replacement policy implemented. In addition,
some planners implement particular strategies to create heuristics that are used later to guide the
search. This is the case for GAMER and for MERGE-AND-SHRINK, which augments the size of a
table with admissible estimates until it reaches a particular limit. At this point, the table is shrunk
and the search proceeds. This strategy results in a memory profile that shows some decreases at
the points at which shrinking is performed.

For illustration purposes, Figure 5 shows the memory profile for four different planners in
solving problem 018 of the WOODWORKING domain. The planners considered are FDSS-1,
MERGE-AND-SHRINK, GAMER, and SELMAX. Their selection is justified because they all imple-
ment the three different strategies identified above. From the preceding figure, another diagnosis
can easily be inferred: MERGE-AND-SHRINK performs a number of shrinking operations, the
most prominent one at t = 370.59 s, at which the memory decreased from 5277.31 MB to 91.70
MB in just 5 s. FDSS-1 shows the typical memory profile of a portfolio whereby memory is
used and released as the solvers implemented in it are successively invoked. It is notable that the
second solver used by FDSS-1 in this particular case shows a memory profile much like that of
MERGE-AND-SHRINK. Inspection of the code for FDSS-1 revealed that this is exactly the second
planner that is automatically invoked by it. SELMAX uses memory incrementally, as most plan-

19



(a) The six top-ranked planners (b) The six bottom-ranked planners

Figure 6: Maximum memory (y-axis, MB) taken by each entry in the sequential optimal track for solving a specific
number of planning tasks.

CPT4

LMCUT

FD-AUTOTUNE

SELMAX

IFORKINIT

LMFORK

FORKINIT

FDSS1

BJOLP

FDSS2

MERGE & SHRINK

GAMER

Figure 7: Partial order of the performance of planners for memory usage in the sequential optimal track according to the
Wilcoxon signed-rank test.

ners do, and always keeps within the limits. Indeed, it has been observed that SELMAX incurs
a very low percentage of memory failures. Finally, GAMER, the only planner that succeeded in
solving this particular planning task, shows a monotonically increasing profile while building
the PDB up to t = 900 s. At this point, the memory usage falls abruptly. This is because the
PDB creation process is killed and the memory allocated is freed. From here, another search
is conducted forward until the solution is found at t = 1237.86 s with memory consumption of
3303.72 MB, slightly greater than half of the available memory.

Figure 6 shows the memory required to solve a particular number of tasks.
The Wilcoxon signed-rank results for memory usage are shown in Figure 7. Surprisingly, in

spite of all the available memory (up to 6 GB of RAM), there are four planners (CPT4, LMCUT,
FD-AUTOTUNE and SELMAX) that take, on average, less than 1 GB. Planners that are known to
use massive memory are ranked last according to this metric: GAMER, which creates BDDs, and
MERGE-AND-SHRINK, which creates abstractions. Finally, FDSS-1 uses much more memory, on
average, than the other planners, and this observation is supported by the statistical test results,
yet it never fails on memory. The reason is that it monitors its own memory usage. When it
exceeds a given limit, the solver is aborted and the next one is invoked.

4.2.4. Distinguished performers in the sequential optimal track
The results in Table 4 (page 17) reveal the following:

20



• FDSS-1 and FDSS-2 were the top performers among all entries in the sequential optimal
track, as evidenced by the statistical test results summarized in Figure 2, page 17.

• Among all entries shown in the second level of Figure 2, SELMAX and MERGE-AND-
SHRINK solved more problems.

Therefore, the following planners were distinguished by their performance in the sequential op-
timal track of IPC-2011:

• Winner: instead of nominating two variants of the same planner as winners, the one that
solved more problems was chosen as the winner. The planner selected was FDSS-1, which
solved 185 problems in total.

• Runner-up: although there is no statistical evidence (at a confidence level of 99.5%)
of differences between SELMAX, MERGE-AND-SHRINK, FD-AUTOTUNE, LM-CUT, and
FORKINIT, the first two were chosen as joint runners-up because they solved more prob-
lems, 169 each in total.

An interesting observation is that two of the three winning planners (FDSS-1 and MERGE-
AND-SHRINK) are portfolios. Moreover, the three portfolios in the competition (including FDSS-
2) showed the best performance among all entries, tying only with SELMAX.

4.3. Performance of the sequential satisficing planners
For the sequential satisficing track there were 27 competing planners. The following subsec-

tions examine their performance under different parameters.

4.3.1. Number of problems solved and quality
According to the expression given in Section 2.3, each planner is assigned a score in the

interval [0, 1], with 0 if no solution is found and 1 if no planner found any solution with better
quality or, alternatively, with a lower total cost. Therefore, coverage (or the number of problems
solved) does not necessarily equal the final score. Table 5 shows the final score, the number
of problems solved, and the success rate in descending order for the first parameter. This table
considers only solutions validated by VAL. For this track, 13.6% of the solutions were deemed
invalid by VAL. It should be noted that this happened a number of times just because the output
was not compliant with the format recognized by VAL.11

It is evident that LAMA-2011 ranked first in terms of both the number of problems solved and
the scoring function used. FDSS-1 solved just one fewer problem than PROBE and the FDSS-2
variant. Although the correlation between coverage and score in this track is as high as 0.98, a few
planners would have been ranked differently if coverage had been chosen instead. Remarkably,
PROBE ranks third for the number of problems solved (tied with FDSS-2) instead of eighth,
whereas FD-AUTOTUNE-2 ranks ninth for the number of problems solved instead of sixth. These
differences are due solely to the quality of the solutions found. The explanation is that although
PROBE has excellent coverage, its plans tend to be worse than those generated by other entrants.
Similarly, FD-AUTOTUNE-1 does not solve as many problems as its final position might suggest,
but its plans are usually better.

11For example, according to its authors, ACOPLAN suffered from an internal bug that caused it to write some plans in
an invalid format (Fabio Rossi, personal communication).

21



LAMA-2011 FDSS-1 FDSS-2 FD-AUTOTUNE-1
Score 216.33 202.08 196.00 185.09
Solved 250 232 233 223
Success rate 89.28% 82.85% 83.21% 79.64%

ROAMER FD-AUTOTUNE-2 FORKUNIFORM PROBE
Score 181.47 178.15 177.91 177.14
Solved 213 193 207 233
Success rate 76.07% 68.92% 73.92% 83.21%

ARVAND LAMA-2008 LAMAR RANDWARD
Score 165.07 163.33 159.20 141.43
Solved 190 188 195 184
Success rate 67.85% 67.14% 69.64% 65.71%

BRT CBP2 DAE YAHSP YAHSP2
Score 116.01 98.34 95.23 94.97
Solved 157 135 110 138
Success rate 56.07% 42.85% 39.28% 49.28%

YAHSP2-MT CBP LPRPGP MADAGASCAR-P
Score 90.95 85.43 67.07 65.93
Solved 132 123 118 88
Success rate 47.14% 43.92% 42.14% 31.42%

POPF2 MADAGASCAR CPT4 SATPLANLM-C
Score 59.88 51.98 47.85 29.96
Solved 81 67 52 32
Success rate 28.92% 23.92% 18.57% 11.42%

SHARAABI ACOPLAN ACOPLAN2
Score 20.52 19.33 19.09
Solved 33 20 20
Success rate 11.78% 7.14% 7.14%

Table 5: Score, number of problems solved, and success rate for the sequential satisficing planners

Figure 8 shows the partial order according to the binomial test results for coverage. Like-
wise, Figure 9 (page 24) shows the partial order according to the Wilcoxon signed-rank test for
plan quality. Recall from the beginning of this section that only double hits are considered in
the second case. It should be noted that some results suggest a significant difference in favor
of a planner that solves far fewer problems. This is reasonable since use of only double hits
completely ignores the overall performance of each planner. A plausible interpretation of this
observation is that some planners might solve problems with higher quality solutions but that the
price they pay in searching to find these solutions is so high that they solve a much smaller set of
problems.

In terms of quality, CPT4, DAE YAHSP, FDSS-1, and ARVAND dominate all the other planners
at a confidence level of 99.9%, and CPT4 and FDSS-1 are the only non-dominated planners at
a confidence level of 99.5%. Importantly, PROBE is dominated by a good number of planners,

22



LAMA-2011

ROAMER

ROAMER FD-AUTOTUNE-1 FDSS-1 PROBE FDSS-2

FORKUNIFORM

RANDWARD LAMA-2008 FD-AUTOTUNE-2 LAMAR FORKUNIFORM ARVAND

ROAMER

ARVAND BRT CBP2 YAHSP2-MT YAHSP2

LPRPGP DAE YAHSP CBP DAE YAHSP

POPF2 MADAGASCAR-P

MADAGASCAR CPT4

SHARAABI SATPLANLMC ACOPLAN2 ACOPLAN

Figure 8: Partial order for planner performance in the sequential satisficing track in terms of coverage according to the
binomial test with p = 0.5. The nodes ARVAND and ROAMER have been replicated for clarity.

including LAMA-2011, both variants of FAST-DOWNWARD STONE-SOUP, and FD-AUTOTUNE.
This endorses the intuition that the quality of plans generated by PROBE is low. Interestingly,
when coverage is fully ignored, LAMA-2011 appears to be dominated by a number of plan-
ners: CPT4, FD-AUTOTUNE-2, and FDSS-1 at a confidence level of 99.9%, and additionally by
ARVAND at a confidence level of 99.5%. Undoubtedly, the difference in score between LAMA-
2011 and these planners should mainly be attributed to coverage, since for every successful
planning instance the score necessarily increases. With regard to the winner of the previous edi-
tion, LAMA-2008 still shows competitive performance as it is dominated by only a few planners.

4.3.2. Analysis of CPU time
In this section, we first show how the number of problems solved evolved over time in the

range (0, 1800] s. Owing to the large number of participants in this track, Figure 10 (page 25)
has been split into four parts.

LAMA-2011 is the fastest planner in solving problems. It is only dominated by PROBE in the

23



CPT4

FD-AUTOTUNE-2

FDSS-2 ARVAND FDSS-1 DAE YAHSP

BRT

ROAMER FD-AUTOTUNE-1 LAMA-2008 LAMA-2011 FORKUNIFORM

BRT

PROBE LAMAR SATPLANLM-C BRT

CBP2 YAHSP2-MT YAHSP2

MADAGASCAR-P

RANDWARD CBP

MADAGASCAR SHARAABI MADAGASCAR-P POPF2

LPRPGP

Figure 9: Partial order for planner performance in the sequential satisficing track in terms of plan quality according to the
Wilcoxon signed-rank test using only double hits. The nodes BRT and MADAGASCAR-P have been replicated for clarity.

first 2 s, and is ranked first over all other entrants immediately thereafter. Interestingly, PROBE,
FDSS-1, FDSS-2, and FD-AUTOTUNE-1 show a profile that is still increasing close to the end of
the time span, that is, the planners shown in Figure 10(a) suffer no stagnation in terms of their
performance. This is not the case for YAHSP2-MT, as shown in Figure 10(c), which stagnates
severely after the first 199 s. A good example of a planner that solves plans at a very fast pace
in some intervals is BRT (as shown in Figure 10(c)), whose runtime distribution is typical of a
system that performs a lot of preprocessing before starting to search for a solution plan.

To confirm all these observations, a statistical test was performed for the time taken until a
first solution is found. Figure 11 (page 26) shows the resulting dominance graph. As anticipated
by our preliminary analysis, LAMA-2011 significantly outperforms all other entrants in the se-
quential satisficing track in terms of running time. In addition, as suggested by the preliminary
analysis derived from Figure 10(a), PROBE, FDSS-1, and FD-AUTOTUNE-1 are very fast, and are
dominated only by the winner, whereas FDSS-2 is dominated by the previous entries, the last two
at α = 0.001 and the first at α = 0.005. Finally, it is worth noting that LAMA-2008 dominates
half the competitors with regard to raw speed.

4.3.3. Analysis of memory performance
Since the evaluation schema of the competition emphasized quality by fixing the allotted time

to 30 min, many planners followed one of two strategies: (i) most of them implemented anytime
24



(a) The six top-ranked planners (b) The next six ranked planners

(c) The next seven ranked planners (d) The eight bottom-ranked planners

Figure 10: Analysis of the evolution of the number of problems solved in the sequential satisficing track over time in the
range [1, 1800) s. The x-axis is shown on a logarithmic scale.

approaches that try to find a solution quickly and then refine it during the remaining time; and (ii)
a few implemented portfolios or collections of different solvers that were invoked successively.
In the first case, memory is usually consumed incrementally. In the second case, planners exhibit
a memory usage profile that increases while one solver is trying to solve a particular problem,
and then abruptly decreases (by releasing all the memory used) if a solution is not found before
the next solver is started. This behavior is then repeated as many times as solvers are used.

For illustration purposes, Figure 12 (page 27) shows an example of these strategies. It shows
the memory profile for LAMA-2011 and the portfolios FDSS-1 and FDSS-2 in the 11th problem of
the OPENSTACKS domain. All the planners successfully solved this case, with LAMA-2011 gen-
erating up to 18 different solutions and the portfolios generating seven solutions each. Whereas
LAMA-2011 uses memory incrementally, FDSS-1 and FDSS-2 exhibit a number of cycles in
which memory is used and then released.

Figure 13 (page 27) shows the maximum memory required by all entrants in this track as a
function of the number of problems solved by each of them. In particular, BRT takes less than 6
GB to solve 127 planning tasks, but it exceeds this limit to solve 30 additional tasks. BRT uses

25



LAMA-2011

PROBE FDSS-1 FD-AUTOTUNE-1

ROAMER LAMAR FDSS-2 FORKUNIFORM

ARVAND

RANDWARD LAMA-2008 FD-AUTOTUNE-2 ARVAND

YAHSP2-MT

BRT YAHSP2 CBP2 CBP YAHSP2-MT

LPRPGP MADAGASCAR-P DAE YAHSP YAHSP2

POPF2 MADAGASCAR

CPT4

SATPLANLM-C SHARAABI ACOPLAN2 ACOPLAN

Figure 11: Partial order for planner performance in the sequential satisficing track for the time taken to find the first
solution according to the Wilcoxon signed-rank test.

only a few hundreds of MB most of the time, but it can take a few GB when loading the results
of a SAT compilation into memory. It has been observed that this task consistently lasts for less
than 5 s and is performed by a subprocess that never uses 6 GB on its own.

Figure 14 (page 28) shows the Wilcoxon signed-rank results for the maximum memory ever
used. Not surprisingly, the worst-performing planners in terms of memory usage are among those
that failed more often on memory: POPF2, LAMAR, LAMA-2008, RANDWARD, and ROAMER.
By contrast, a few planners showed impressive management of available memory: PROBE never
failed on memory and DAE YAHSP failed only once, although they are among the planners that
use more memory. Finally, the portfolios FDSS-1 and FDSS-2 also managed to keep within the
available memory and show good usage.

4.3.4. Distinguished performers in the sequential satisficing track
The results in Table 5 (page 22) reveal the following:

• LAMA-2011 ranked first according to the official score. It also showed outstanding per-
formance in terms of both plan quality and raw speed, as evidenced by the statistical tests

26



Figure 12: Examples of typical memory profiles observed in the sequential satisficing track. The figure shows the
memory profile for LAMA-2011 and the portfolios FDSS-1 and FDSS-2 in solving problem 010 of the OPENSTACKS
domain.

(a) First group (b) Second group

(c) Third group (d) Fourth group

Figure 13: Maximum memory (y-axis, MB) used by each entry in the sequential satisficing track in solving a specific
number of planning tasks.

summarized in Figures 9 (page 24) and 11 (page 26).

• FDSS-1 ranked second according to the official IPC score. When considering plan quality,
27



CPT4 ACOPLAN ACOPLAN2

ARVAND MADAGASCAR-P

BRT CBP SATPLANLM-C YAHSP2

MADAGASCAR FDSS-1 CBP2

BRTLPRPGP

SATPLANLM-C YAHSP2 SHARAABI FDSS-2 CBP LPRPGP

BRT

BRT LAMA-2011 FD-AUTOTUNE-2 FD-AUTOTUNE-1 FORKUNIFORM YAHSP2-MT

RANDWARD DAE YAHSP PROBE POPF2

ROAMER LAMAR LAMA-2008

Figure 14: Partial order for planner performance in the sequential satisficing track for the maximum memory ever used
in each planning task according to the Wilcoxon signed-rank test.

FDSS-2 has a similar performance and CPT4 and FD-AUTOTUNE-2 are better, as suggested
by Figure 9. However, the second variant of FAST-DOWNWARD STONE-SOUP is dominated
by the first one when observing raw speed, as shown in Figure 11 (page 26), and CPT4 and
FD-AUTOTUNE-2 rank far behind FDSS-1, as shown in Table 5.

Thus, the following planners were distinguished by their performance in the sequential track
of IPC-2011:

• Winner: LAMA-2011, with an overall score of 216.33 and 250 problems solved.

• Runner-up: FDSS-1, with a final score of 202.08 and 232 problems solved.

Finally, it is worth noting that the analysis performed in Section 6 under alternative metrics
shows that PROBE also exhibited outstanding performance. However, since the IPC emphasized
plan quality, PROBE was not selected as a winner as quality was its major drawback.

4.4. Performance of the sequential multi-core planners

A sequential multi-core track was introduced in the IPC series for the first time in 2011 to
acknowledge this planning architecture trend. Section 2.1 provides a description of its rules.

28



ARVANDHERD AYALSOPLAN PHSFF ROAMER-P
Score 227.07 159.95 130.59 129.06
Solved 236 184 163 140 (179)
Success rate 84.28% 65.71% 58.21% 50.0%

YAHSP2-MT MADAGASCAR-P MADAGASCAR ACOPLAN
Score 118.58 66.44 52.00 17.62
Solved 153 (155) 88 67 18
Success rate 54.64% 31.42% 23.92% 6.42%

Table 6: Score, number of problems solved, and success rate for the sequential multi-core planners.

To facilitate comparisons among tracks, entrants in the sequential multi-core track were faced
with exactly the same problems chosen for the sequential satisficing track; the results of this
comparison can be found in Section 5.2.

4.4.1. Number of problems solved and quality
In this track, 16.5% of the plans issued were not valid according to VAL. Table 6 shows the

final score for each planner, along with the number of problems solved and the success rate.
Remarkably, the winner of this track, ARVANDHERD, did not outperform the winner of the

sequential satisficing track and it solved 14 fewer problems than LAMA-2011 did, despite being
allowed more computational resources. A number of planners that entered this track also par-
ticipated in the sequential satisficing track: YAHSP2-MT, MADAGASCAR-P, MADAGASCAR, and
ACOPLAN. YAHSP2-MT was able to solve more problems when allowed to run the subprocesses
for longer, solving 18 additional problems. MADAGASCAR and MADAGASCAR-P solved exactly
the same number of problems, 88 and 67, respectively, and ACOPLAN, surprisingly, solved two
fewer problems. The performance of MADAGASCAR and MADAGASCAR-P was as expected,
since these are the same planners as entered in the sequential satisficing track. However, the case
of ACOPLAN seems more difficult to account for. A plausible explanation is that this planner uses
a stochastic algorithm so that small differences in coverage can easily be attributed to chance,
even if more computational resources are allowed.

As noted in Section 2.1, the IPC was run in a very strict mode. Among other considerations,
if a planner ever produced an invalid solution, the problem was considered unsolved even if some
valid plans were first generated. While this did not affect most planners across all tracks, two
planners in the sequential multi-core track were affected by this decision. The first, YAHSP2-MT,
created invalid solutions (along with valid solutions) in two different problems of the PEGSOL
domain and thus these problems did not contribute to improving its score. By contrast, this de-
cision severely hampered ROAMER-P, which created invalid plans in 39 different problems in
the following domains (number of problems affected shown in parentheses): NOMYSTERY (1),
BARMAN (7), PARKING (6), SCANALYZER (1), SOKOBAN (7), TIDYBOT (3), TRANSPORT (1),
VISITALL (4), and WOODWORKING (9). ROAMER-P was equipped with a technique to avoiding
plateaus based on random walks. After the competition, its authors discovered a bug in con-
structing new states that caused this undesired behavior, which decreased the number of prob-
lems effectively used for computing its score from 179 to 140. If no invalid problem had been
issued in any of these cases, its final score would have been 165.01, ranking second in the end.
For the sake of completeness, these values are shown in Table 6 in italics. In the following, we

29



ARVANDHERD

PHSFF

AYALSOPLAN

YAHSP2-MT

ROAMER-P MADAGASCAR-P

MADAGASCAR

ACOPLAN

Figure 15: Partial order for planner performance in the sequential multi-core track in terms of successfully solved prob-
lems according to the binomial test with p = 0.5.

ARVANDHERD ROAMER-P

AYALSOPLAN

PHSFF

MADAGASCAR-P

MADAGASCAR

YAHSP2-MT

Figure 16: Partial order for planner performance in the sequential multi-core track in terms of quality according to the
Wilcoxon signed-rank test considering only double hits.

discuss the results for which generation of an invalid plan resulted in an invalid problem (even if
there were some valid solutions also) unless stated otherwise.

From the preceding table it also follows that sorting the performance of the multi-core plan-
ners according to their score successfully ranks them with respect to coverage. There is only one
exception: ROAMER-P solved 140 problems, whereas YAHSP2-MT solved 155, yet the former
obtained a better score; in fact, the coefficient for correlation between coverage and the score
was 0.986. A plausible explanation for this phenomenon lies in the quality of the plans found by
each planner. The results in Table 6 suggest that the quality of the plans found by ROAMER-P
are significantly better than those found by YAHSP2-MT. To test this conjecture and to provide
additional information about the significance of the differences, various statistical tests were per-
formed.

The first test analyzes the number of problems effectively solved by each planner. Figure 15
shows the acyclic graph resulting from the binomial test for p = 0.5. If the cases for which
ROAMER-P and YAHSP2-MT produced invalid solutions along with valid solutions are used fa-
vorably, the scenario changes significantly. The main differences are that the performance of
AYALSOPLAN, PHSFF, ROAMER-P, and YAHSP2-MT is indistinguishable at a confidence level of
99.9%. At a confidence level of 99.5%, AYALSOPLAN dominates YAHSP2-MT, but not ROAMER-
P or PHSFF.

Figure 16 shows the dominance relationships between entrants in the sequential multi-core
track with regard to plan quality as computed by the Wilcoxon signed-rank test. In this figure,
ACOPLAN was removed because the set of problems solved was not considered to be statistically
significant. As shown, ARVANDHERD finds plans with the best quality among all participants.
The ability of ROAMER-P to find good plans as conjectured above is confirmed. Finally, there
is no clear dominance among the other entries. Since the number of double hits between them
is often just barely below 65% over the total number of problems solved (thus producing sam-

30



Figure 17: Analysis of the number of problems solved over time in the range [1, 1800] s. The x-axis is shown on a
logarithmic scale.

ARVANDHERD

AYALSOPLAN

PHSFF

YAHSP2-MT

ROAMER-P

MADAGASCAR-P

MADAGASCAR

ACOPLAN

Figure 18: Partial order for planner performance in the sequential multi-core track in terms of time taken to find the first
solution according to the Wilcoxon signed-rank test.

ple populations of reasonable size), this is attributed to the fact that they excel in disjoint sets
of domains. Indeed, MADAGASCAR and MADAGASCAR-P are better in PARCPRINTER, whereas
PHSFF clearly outperforms the other planners in ELEVATORS, SCANALYZER, SOKOBAN, and
TIDYBOT; finally, YAHSP2-MT excels in BARMAN, FLOORTILE, TRANSPORT, and VISITALL. In
other domains, either the performance is very similar (as in NOMYSTERY), or none of the plan-
ners can find solutions (especially in OPENSTACKS), so that no statistically relevant observations
can be made.

4.4.2. Analysis of CPU time
Figure 17 shows the evolution of the number of problems solved in the interval (0, 1800] s.

PHSFF and YAHSP2-MT are the fastest algorithms in the short term, with PHSFF always solving
more problems than YAHSP2-MT up to the end of the interval. PHSFF solved 120 problems in the
first 13 s (and YAHSP2-MT solved 109), whereas ARVANDHERD solved 119 problems. From this
point on, the winner of this track progressed much faster and had already solved 123 problems
at t = 14 s, and YAHSP2-MT solved only one additional problem. However, these planners are
still among the fastest up to t = 58 s, at which point AYALSOPLAN catches YAHSP2-MT, with
both planners solving 123 problems by this time. A couple of minutes later, at t = 219 s, the
coverage of AYALSOPLAN equals that of PHSFF, with 153 problems solved, and it finally solves
more problems, as shown in Table 6 (page 29).

Figure 18 shows Wilcoxon signed-rank results for raw speed. The ability of PHSFF to find
solutions promptly is much the same as for AYALSOPLAN and YAHSP2-MT at the most restrictive

31



Figure 19: Examples of typical memory profiles observed in the sequential multi-core track. The figure shows the
memory profile for ARVANDHERD, AYALSOPLAN, PHSFF, and ROAMER-P in solving problem 012 of the TRANSPORT
domain. The x-axis is shown on a logarithmic scale.

confidence level. At a confidence level of 99.5% the situation changes and PHSFF is faster than
YAHSP2-MT, but not AYALSOPLAN. Other relationships shown in Figure 18 are supported by
the curves shown in Figure 17. In particular, MADAGASCAR-P is faster than MADAGASCAR,
which in turn is faster than ACOPLAN. There is, however, an interesting observation: Figure 17
shows that ROAMER-P is clearly dominated by the two variants of MADAGASCAR up to t = 1254
s. By this point, ROAMER-P had solved 67 problems, the same number of problems solved by
MADAGASCAR. A few minutes later, at t = 1501 s, ROAMER-P had solved as many problems
as MADAGASCAR-P (88), and dominated MADAGASCAR and MADAGASCAR-P from this point
on both. Indeed, at this time point it started to solve new problems very rapidly, reaching 140
problems, presumably as a result of the technique used to avoid plateaus (Section 4.4.1) since
the planner is started once a preliminary search fails. This steep increment in performance is
reflected in the Wilcoxon signed-rank test, which determines that ROAMER-P dominates both
MADAGASCAR and MADAGASCAR-P.

4.4.3. Analysis of memory performance
In the sequential multi-core track, all entrants launched a number of processes, each one

consuming its own memory requirement. Since these processes can be started and terminated
according to different policies, it is rather difficult to outline a general behavior of the sequen-
tial multi-core planners with regard to memory usage. For example, while most planners start a
reduced number of processes and then launch threads when needed (e.g., PHSFF varies the num-
ber of threads from two and six for the same process), others (such as AYALSOPLAN) vary the
number of both processes and threads during the whole processing time.

For illustration purposes, Figure 19 shows the memory profile for ARVANDHERD, AYALSO-
PLAN, PHSFF, and ROAMER-P in solving problem 012 of the TRANSPORT domain. This figure
differs slightly from Figures 5 (page 19), 12 (page 27), and 27 (page 38). In this case, the x-axis
shows wall-clock time instead of CPU time. In general, it was observed that planners in this
track showed a monotonically increasing profile even if memory decreases from time to time.

Figure 20 shows the maximum memory needed to solve a specific number of problems for
all entrants in this track. The maximum memory reported by AYALSOPLAN results from various
observations already made in Section 4.1. This planner starts a good number of processes, each

32



Figure 20: Maximum memory (y-axis, MB) taken by each entry of the sequential multi-core track in solving a specific
number of planning tasks.

PHSFF

MADAGASCAR-P MADAGASCAR

ACOPLAN

ARVANDHERD

YAHSP2-MT

ROAMER-P

AYALSOPLAN

Figure 21: Partial order for planner performance in terms of memory usage in the sequential multi-core track according
to the Wilcoxon signed-rank test.

of which stores a different hash table that is used as a pruning device. Although the memory
required to store this table is tiny, every process consumes memory in storing the states that are
encountered. Thus, every process takes additional memory without ever exceeding the maximum
allotted, but in different segments, so that the overall memory goes well beyond the limit of 6
GB. To conclude, it is worth noting that YAHSP2-MT solves 81 problems and consumes more
than 6000 MB in each execution, but always below 6 GB.

The Wilcoxon signed-rank results for the maximum memory ever used are shown in Fig-
ure 21. Remarkably, ARVANDHERD almost never exceeded the available memory, even consid-
ering that it might take a significant amount of memory in cases that were not solved. This is
because it implements specific rather conservative limits on memory usage. If any thread exceeds
the allotted memory, ARVANDHERD either returns immediately or is restarted with a less greedy
search, depending on the solver and the number of failures that occurred. At the other extreme,
PHSFF tends to use less memory but also fails more often on memory; it failed on memory in the
example shown in Figure 19. This is because it does not implement any memory policies and
relies only on its low memory consumption.

4.4.4. Distinguished performers in the sequential multi-core track
According to the results in Table 6 (page 29), ARVANDHERD and AYALSOPLAN solved more

problems with the highest score. In particular, the difference between ARVANDHERD and all the
other entrants, as evidenced by the statistical test performed in Section 4.4.1 for which results
are summarized in Figure 16 (page 30), is deemed statistically significant. AYALSOPLAN appears

33



DAE YAHSP YAHSP2-MT POPF2 YAHSP2 LMTD
Score 126.16 111.14 110.60 98.97 57.75
Solved 136 145 119 137 62
Success rate 56.67% 60.41% 49.58% 57.08% 25.83%

CPT4 SHARAABI TLP-GP
Score 44.41 0 0
Solved 46 0 0
Success rate 19.16% 0% 0%

Table 7: Score, number of problems solved, and success rate for the temporal satisficing planners.

to be dominated by ROAMER-P and has indistinguishable performance from PHSFF. However,
these two planners were ranked far behind AYALSOPLAN. Thus, the following planners were
distinguished by their performance in the sequential multi-core track of IPC-2011:

• Winner: ARVANDHERD, with an overall score of 227.07 and 236 problems solved.

• Runner-up: AYALSOPLAN, with a final score of 159.95 and 184 problems solved.

4.5. Performance of the temporal satisficing planners
The following subsections examine the performance of entrants in the temporal satisficing

track under the usual parameters: number of problems solved, quality, CPU time, and memory
management.

4.5.1. Number of problems solved and quality
In this track, planners were required to find a valid solution to a planning task that involves

durative actions that might temporarily overlap or interfere. A key difference for this track is that
planners were not required to minimize the total cost of the actions in the plan, but the makespan.
In fact, there is no notion of cost other than the duration of each action for the purpose of the
competition, but of course costs can be defined in general for temporal planning.

It has already been noted that temporal planning can be computationally more complex than
classical planning [10]. In fact, it was found that concurrency differentiates expressive temporal
action languages from simple ones [27]. Nevertheless and despite the availability of a temporal
extension to PDDL since 2003 [39], most domains in previous IPCs were inherently sequential
so that concurrency was not required to solve the problems [40].12

In IPC-2011, three of 12 domains required concurrency explicitly: MATCHCELLAR (Ap-
pendix B.2.4), TMS (Appendix B.2.11) and TURNANDOPEN (Appendix B.2.12). Planners were
allowed to produce multiple solutions and all of them were verified with VAL, which found that
up to 40.1% of the plans issued were invalid, most of them produced by DAE YAHSP, YAHSP2,
and YAHSP2-MT in the domains that explicitly required concurrency.

Table 7 shows the final score, the number of problems solved, and the success rate for the
temporal satisficing planners. In this case, the coefficient for correlation between the number
of problems solved and the score is 0.981. The most remarkable observations are that YAHSP2-
MT and YAHSP2 are the first- and second-ranked planners according to the number of problems

12Although, as mentioned in Section 3.1, a number of them were introduced in the fourth IPC.
34



YAHSP2-MT YAHSP2 DAE YAHSP POPF2

LMTD CPT4

Figure 22: Partial order for planner performance in the temporal satisficing track in terms of successfully solved problems
according to the binomial test with p = 0.5. An alternative confidence level of 99.5% did not change the results.

LMTD

DAE YAHSP

CPT4

POPF2

YAHSP2-MT YAHSP2

Figure 23: Partial order for planner performance in the temporal satisficing track in terms of quality (or, equivalently,
makespan) according to the Wilcoxon signed-rank test considering only double hits. An alternative confidence level of
99.5% did not change the results.

solved, yet their score ranks them second and fourth, respectively. In this regard, almost no statis-
tical dominance was found among the top-ranked planners, as discussed next. Remarkably, two
planners did not solve a single problem: SHARAABI and TLP-GP. In particular, SHARAABI [41]
actually solved 63 instances, but all the plan solutions were found to be invalid according to VAL.
The problem was that SHARAABI did not shift the start time of actions consuming a resource
immediately after the preceding action produced it; instead, one ended precisely at the same time
as the other started. This is invalid according to VAL. For TLP-GP, the authors reported a bug in
the parser that prevented it from ever solving a single instance.

Planners SHARAABI and TLP-GP were removed from the following statistical tests as they
were not able to solve any problem. Figure 22 shows the binomial test results for coverage.
As anticipated, the statistical test distinguishes the performance of all planners with regard to
coverage in just two levels, placing the four top-ranked planners in the first and the other two
in the second. On one hand, while YAHSP2-MT is the planner providing the best coverage, its
performance is very close to that of both DAE YAHSP and YAHSP2. On the other hand, in spite
of its differences in coverage from POPF2, both planners solve rather different sets of problems:
DAE YAHSP, YAHSP2-MT, and YAHSP2 are epoch-based planners, which gives them a remark-
able advantage when solving simple temporal domains, but they are incomplete, as witnessed by
their poor performance in concurrent domains, for which they solved no problem at all. POPF2
and LMTD were the only planners able to find solutions to domains that required concurrency.
Indeed, POPF2 solved all the problems in the MATCHCELLAR domain, nine in TURNANDOPEN,
and five in TMS. Its performance in these domains is only rivaled by LMTD, which solved 15
problems in MATCHCELLAR, 13 in TURNANDOPEN, and none in TMS. It seems reasonable to
assume that if more domains requiring concurrency had been selected, the final scores would
have changed substantially.

The situation becomes even more apparent when considering differences in quality or ma-
kespan for the solutions found by each planner. The Wilcoxon signed-rank results are shown
in Figure 23. CPT4 stands out, as expected, since it is an optimal planner. However, LMTD

35



Figure 24: Analysis of the evolution of the number of problems solved by planners in the temporal satisficing track over
time in the range [1, 1800) s. The x-axis is shown on a logarithmic scale.

dominates CPT4 in terms of makespan, with medians for the total time distribution of 7 and
7.17, respectively. This is a counterintuitive result since LMTD is a satisficing temporal plan-
ning system, whereas CPT4 is an optimal planner, so this observation deserves an explanation.
CPT4 is indeed an optimal planner (and this explains its low coverage) for both makespan and
total cost (the latter was not tested in IPC-2011). However, when optimizing total time it ac-
tually produces optimal plans with regard to the conservative semantics [42] and not to PDDL
2.1 semantics, although the latter allow more concurrency and thus shorter makespans. Obvi-
ously, CPT4 could have easily performed a post-processing step to compress the plans, switching
from conservative to PDDL 2.1 semantics, but CPT4 was never designed to produce such plans
according to its author (Vincent Vidal, personal communication). LMTD uses a heuristic called
temporal precedence constraints contexts, htpcc [43], whose efficiency strongly depends on the
selection of preference constraints among preconditions. Although it is unclear whether this
heuristic works in the general case or not, LMTD performed exceptionally well according to the
Wilcoxon signed-rank test,13 and this is attributed mainly to the accuracy of its estimates in those
cases. To conclude, the median of the total time distribution for the plans generated by LMTD
is very close to the medians of the same distributions generated by POPF2 and DAE YAHSP, but
is greater than those of YAHSP2-MT (9 versus 10.14) and YAHSP2 (9 versus 11.66). The latter
differences are deemed statistically significant, even at a restrictive confidence level of 0.001.

4.5.2. Analysis of CPU time
Figure 24 shows an overall view of the number of problems solved by each planner and how

quickly they provided responses; the makespan of the plans generated by each planner is ignored.
The raw speed performance of the planners falls into four different categories: (i) YAHSP2-MT
dominates all the other entries; (ii) YAHSP2 dominates DAE YAHSP and POPF2 most of the time,
except at the end, where DAE YAHSP solves one fewer problem than YAHSP2 does; (iii) CPT4
and LMTD perform similarly and are dominated throughout the interval by the previously men-
tioned planners; and (iv) SHARAABI and TLP-GP are included only for the sake of completeness,
but their curve is hidden because they did not solve any problem. Interestingly, DAE YAHSP

13Recall that when comparing plan quality, only double hits are considered.
36



YAHSP2-MT YAHSP2
DAE YAHSP

POPF2

LMTD

CPT4

Figure 25: Partial order for planner performance in the temporal satisficing track in terms of time taken to find the first
solution according to the Wilcoxon signed-rank test. An alternative confidence level of 99.5% did not change the results.

progresses by solving problems throughout the interval, whereas all the other planners stagnate
relatively soon. For example, YAHSP2-MT, the winner of the track, had solved 144 problems at
t = 196 s and only solved one additional problem in the remaining 1604 s.

The Wilcoxon signed-rank results for raw speed are shown in Figure 25. Again, SHARAABI
and TLP-GP have been excluded from this analysis because they did solve any problem. As
noted above, YAHSP2-MT was the fastest algorithm providing responses, followed by YAHSP2.
This observation is supported by Figure 24, which indicates that these planners were the fastest
throughout the interval. As expected, YAHSP2 was faster than the other planners in the second
group: the winner of the track, DAE YAHSP, and one of the joint runners-up, POPF2. The perfor-
mance of these planners in terms of raw speed is significantly superior to that of planners in the
third group: CPT4 and LMTD.

4.5.3. Analysis of memory performance
In the temporal satisficing track there were no portfolios or planners that use memory-based

heuristics. Thus, the most usual policy for handling memory consisted of incremental use. Closer
inspection of the memory consumption by all entrants in this track revealed that this was precisely
the case. As an example, Figure 27 (page 38) shows how much memory was used over time in
solving problem 003 of the ELEVATORS domain, which was solved by all the planners except
CPT4, SHARAABI, and TLP-GP. It is evident that memory was used linearly and increased over
the whole period. Note, however, the flat profile for POPF2 from t = 240 s up to t = 1000 s. This
results from the particular choice of algorithms by POPF2. From t = 0 s to t = 240 s, POPF2
uses the enforced hill-climbing search algorithm (EHC) [31], retaining the set of visited states to
avoid visiting duplicate states. This set grows, as shown in Figure 27. At t = 240 s, EHC stops
searching and the set of visited states is cleared, although POPF2 retained the memory internally.
From t = 240 s to t = 1000 s, a weighted-A∗ (WA∗) search is used and a set of visited states is
retained, which grows, filling the memory retained by POPF2. At t = 1000 s, the set of visited
states from WA∗ has filled the memory retained, so memory usage starts to increase again from
this point onwards.

In general, it was observed that POPF2 was very memory-demanding, using all of the avail-
able memory in most cases.14 By contrast, CPT4 was very conservative, using less than 1 GB
most of the time. Figure 26 shows the maximum memory needed to solve a different number of
problems.

Figure 28 shows the acyclic graph representing the statistical dominance among all entrants
in terms of memory consumption according to the Wilcoxon signed-rank test. The results are not

14This was apparently due to an internal bug that was corrected after the competition (Andrew Coles, personal com-
munication). In other cases, POPF2 failed to solve problems (e.g., it solved no problem at all in the FLOORTILE domain)
because of a parsing issue that was also sorted out after the competition (Amanda Coles, personal communication).

37



Figure 26: Maximum memory (y-axis, MB) taken by each entry in the temporal satisficing track in solving a specific
number of planning tasks.

Figure 27: Examples of typical memory profiles observed in the temporal satisficing track. The figure shows the memory
profile for all entrants except SHARAABI and TLP-GP in solving problem 003 of the ELEVATORS domain.

TLP-GP

CPT4
LMTD

SHARAABI

YAHSP2
YAHSP2-MT

DAE YAHSP

POPF2

Figure 28: Partial order for planner performance of planners with regard to memory usage in the temporal satisficing
track according to the Wilcoxon signed-rank test. An alternative confidence level equal to 99.5% did not change the
results.

surprising and the only remarkable observations seem to be that TLP-GP uses even less memory
than CPT4 and that POPF2, as anticipated, uses more memory than all the other planners.

38



4.5.4. Distinguished performers in the temporal satisficing track
According to the results in Table 7 (page 34), the planners DAE YAHSP and YAHSP2-MT have

the highest score. However, the following points are noted:

• The difference in score between YAHSP2-MT and POPF2 is very small (about half a point),
with the former awarded more points than the latter. However, the statistical test conducted
in Section 4.5.1 (Figure 23, page 35) concluded that the latter tends to produce plans with
better quality than the former does.

• Table 7 (page 34) reports that YAHSP2 solved an additional problem over DAE YAHSP.
However when considering quality, this planner is statistically dominated by both DAE YAHSP
and YAHSP2-MT. Since the IPC scoring schema emphasizes quality, this planner was dis-
carded among the list of top performers.

Thus, the following planners were distinguished by their performance in the temporal satis-
ficing track of IPC-2011:

• Winner: DAE YAHSP, with a total score of 126.16 and 136 problems solved.

Runner-up: In view of the preceding considerations, the following planners were named
joint runners-up:

– YAHSP2-MT, with 111.14 points and 145 problems solved, and

– POPF2, with 110.60 points and 119 problems solved, and distinguished performance
in domains requiring concurrency.

5. Scalability analysis

In this section, two different questions related to scalability are analyzed separately. In the
first subsection, we follow the fifth IPC practice [38] and compare the performance of the win-
ners of IPC-2011 and IPC-2008 for the same benchmarking domains. In the second subsection,
we compare the performance of the winners of the sequential satisficing and multi-core tracks
to determine whether the availability of more computational resources resulted in either more
coverage or better plan quality.

5.1. How good is the performance of the IPC-2011 planners?

We now compare the performance of the winners of IPC-2011 with the winners of IPC-
2008 for the same planning tasks: the problems selected for IPC-2011. If refined versions of
the winners of IPC-2008 were available, these were preferred over the versions submitted at the
time, which gives an additional advantage to those entrants. This happened in the sequential
satisficing and optimal tracks, for which the versions entered in IPC-2011 were used instead of
the old versions. This analysis was not possible for the sequential multi-core track since it was
run for the first time in IPC-2011.

39



5.1.1. Sequential optimal track
The winner of the sequential optimal track in IPC-2008 was GAMER. A new version of

this planner was entered in IPC-2011 and therefore it was selected for comparison with the
winner of IPC-2011, FDSS-1. The comparisons are performed with regard to coverage and raw
speed. According to the analysis in this section, overall, the optimal planner that won IPC-
2011 improved on the performance of the optimal planner that won IPC-2008 with regard to the
problems chosen for IPC-2011 in terms of both coverage and raw speed.

Table 4 (page 17) shows that FDSS-1 solved 185 problems and GAMER solved 37 fewer. The
difference in coverage is 13.22% over the whole set of planning tasks, but an improvement of
20% for the number of problems solved by the IPC-2008 winner. In addition, 136 problems
were solved by both the planners. This leaves 12 problems that were solved by GAMER but not
by FDSS-1, and about four times more problems solved by the latter that could not be solved by
the former. These data, in conjunction with the observation that GAMER ranked third from the
bottom, suggest a significant improvement over the current state of the art before the competition.

Figure 3 (page 18) shows that the evolution of coverage over time for GAMER is dominated
by almost every participant in IPC-2008. Again, this suggests a significant improvement over the
previous state of the art.

Finally, the organizers of IPC-2008 reported that GAMER was marginally surpassed at that
time by the baseline planner, a best-first search with a blind heuristic denoted as BLIND. While
GAMER solved 115 problems in 2008, BLIND managed to solve an additional instance. There-
fore, the same baseline planner was compared with the performance of the newest version of
GAMER and the winner of IPC-2011, FDSS-1. The differences in coverage are deemed as defini-
tive: BLIND solved 119 instances from the benchmarking set of IPC-2011, while the newest
version of GAMER and FDSS-1 solved 148 and 185, respectively, as mentioned above. Again,
this result suggests a significant improvement in the current state of the art, in optimal planning
at least, with regard to the benchmarking set chosen in both IPC-2008 and IPC-2011.

5.1.2. Sequential satisficing track
In 2008 the winner of the sequential satisficing track was LAMA-2008 and a refined version

of this planner was entered in IPC-2011. Thus, this version was compared with the current
winner, LAMA-2011, instead of the version submitted in 2008. Again, the analysis in this section
shows that, overall, the planner that won IPC-2011 improves on the performance of the IPC-2008
winner for the problems chosen for IPC-2011 in terms of coverage, quality, and raw speed.

As shown in Table 5 (page 22), LAMA-2008 solved 188 problems and LAMA-2011 solved
250. This represents an improvement of almost 25% in coverage. Not surprisingly, LAMA-2011
solved all the problems solved by LAMA-2008 apart from just five. Interestingly, other planners
not directly based on the same techniques used by LAMA-2008, such as FORKUNIFORM and
PROBE, solved significantly more problems.

Regarding CPU time, Figures 10(a) and 10(b) (page 25) show the evolution of coverage
over time for the 12 top-ranked planners. Clearly, LAMA-2008 is dominated by a number of
participants, including LAMA-2011, as evidenced by the Wilcoxon signed-rank test (Figure 11,
page 26).

5.1.3. Temporal satisficing track
The winner of the temporal satisficing track in 2008 was SGPLAN6. Since it was not en-

tered in IPC-2011, the same version submitted in 2008 was used. Strikingly, SGPLAN6 was

40



surpassed by the baseline solver used in IPC-2008, which consisted of the FF planner [31] after
dropping the temporal definitions and scheduling the resulting plan using the critical path algo-
rithm. Therefore, the baseline planner (denoted here as BASE) was also used for comparison with
the IPC-2011 winners. The analysis in this section shows that, overall, the temporal planner that
won IPC-2011 improves on the performance of the temporal planner that won IPC-2008 for the
problems chosen for IPC-2011 in terms of quality, but not necessarily coverage, and that it per-
forms worse in terms of raw speed. The analysis also highlights the importance of benchmarking
domain selection, and we report here that, contrary to the conclusions reached for IPC-2008,
BASE is not necessarily better than SGPLAN6.

Regarding coverage, SGPLAN6 effectively solved 142 problems, six more than the winner of
IPC-2011, DAE YAHSP, and only three fewer than the planner with the best coverage, YAHSP2-
MT (Figure 7, page 34). However, contrary to the observations made for IPC-2008, BASE solved
116 problems, which represents a decrease of almost 20%. To confirm these observations, a
binomial test on coverage was conducted in a separate track for which the only participants
were DAE YAHSP, POPF2, YAHSP2, YAHSP2-MT, SGPLAN6, and BASE. The resulting p-values
(shown in parentheses) indicate that BASE performed significantly worse in terms of coverage
than YAHSP2-MT (2.85 × 10−5) at a restricted confidence level of α = 0.001. The same hy-
pothesis is accepted at a confidence level of α = 0.005 with respect to YAHSP2 (1.2 × 10−3)
and SGPLAN6 (1.4 × 10−3). However, the differences in coverage compared to DAE YAHSP
(7.5 × 10−3) and POPF2 (0.41) were not statistically significant. Comparison of coverage against
SGPLAN6 revealed no statistically significant dominance.

The scenario is more illustrative if the official metric of the competition is applied to this sep-
arate track (planner score shown in parentheses): the winner and two runners-up for IPC-2011,
DAE YAHSP (122.32), YAHSP2-MT (110.52), and POPF2 (110.51), are still ranked first, second,
and third, respectively, with SGPLAN6 (101.23) ranked fourth and BASE ranked last with a signif-
icantly lower score of 92.07 after YAHSP2, which was awarded 98.66 points. On combining these
results with the observation that SGPLAN6 showed remarkable coverage, it is easy to conclude
that SGPLAN6 generates plans of lower quality than the distinguished planners in IPC-2011. To
test this conjecture, the Wilcoxon signed-rank test was performed for quality, which revealed that
SGPLAN6 does generate worse plans (i.e., with larger makespan) than DAE YAHSP and POPF2
at a confidence level of α = 0.001, with p-values of 1.22 × 10−9 and 1.11 × 10−16, respectively.
There is significant evidence that SGPLAN6 generates plans worse than those of YAHSP2-MT at
a confidence level of α = 0.005, with p = 3.29 × 10−3.

This difference in performance between BASE and SGPLAN6 for a different set of planning
tasks deserves an explanation. In IPC-2011, six domains were reused from IPC-2008: CREW-
PLANNING, ELEVATORS, OPENSTACKS, PARCPRINTER, PEGSOLITAIRE, and SOKOBAN. For
this set of planning tasks, BASE solved 93 problems and SGPLAN6 solved 82. For the new do-
mains introduced in IPC-2011, both planners failed to solve any of the planning tasks requiring
concurrency (in MATCHCELLAR, TMS, and TURNANDOPEN). Both planners solved all problems
in the PARKING domain. However, SGPLAN6 exhibited far superior performance to BASE in the
last two domains, STORAGE (reused from IPC-2006) and FLOORTILE (introduced for the first
time in 2011), for which it solved all the problems, whereas BASE solved only three problems in
the STORAGE domain and none in the FLOORTILE domain. The overall difference between the
planners when comparing their performance in 2008 and 2011 is attributed solely to the selection
of benchmarking problems.

Finally, a Wilcoxon signed-rank test was conducted for CPU time required to find the first
solution (p-values in parentheses): SGPLAN6 was much faster than DAE YAHSP (8.23 × 10−9)

41



and POPF2 (3.68 × 10−5), but was not significantly faster than YAHSP2 (0.16) or YAHSP2-MT
(0.19).

5.2. How good is the performance of the sequential multi-core planners?
Multiple cores have been a standard CPU feature for at least 5 years at the time of writing.

Although this availability might have fostered the development of multi-core planning systems,
participation in the sequential multi-core track was much lower than in its single-core counter-
part, the sequential satisficing track. However, “the relation between a [. . . ] multi-core track
and the corresponding single-core track requires special attention, and the results of the tracks
cannot really be considered in separation from each other” (Jussi Rintanen by e-mail, March 14,
2013).

As mentioned in Section 3.2, the entrants in both tracks were intentionally given the same
planning tasks for ease of comparison. Here we compare the performance of the winners of both
tracks with regard to coverage and plan quality. Tables 5 (page 22) and 6 (page 29) show that
LAMA-2011 and ARVANDHERD solved 250 and 236 problems, respectively. Thus, the winner
of the sequential satisficing track showed better coverage despite using only a single dual core
instead of four dual cores.

Unfortunately, it is not as straightforward to compare the plan quality for these two planners
because the scoring schema used in IPC-2011 may assign a planner a better score simply because
the other planners in the same track were worse (Sections 2.3 and 6). Thus, to provide a better
assessment of differences in plan quality between LAMA-2011 and ARVANDHERD, an alternative
competition was simulated with all entrants in both the sequential multi-core and satisficing
tracks, yielding a total number of 35 entrants. In this way, both planners were compared with
regard to the solutions provided by the same set of planners. The results indicate that the score
for LAMA-2011 slightly decreased from 216.33 to 215.51, while the score for ARVANDHERD
decreased even more, from 227.07 to 210.41. The most prominent differences were observed for
the NOMYSTERY and PARKING domains; ARVANDHERD showed superior performance in the
former but worse performance in the latter. Overall, LAMA-2011 would have been declared the
winner and ARVANDHERD would have been selected as the best runner-up; its difference from
the third-ranked planner, FDSS-1, in this simulated competition is even greater, since FDSS-1
was assigned 201.47 points. In the final ranking, up to 10 classical planners obtain a better score
than the second-ranked multi-core planner, which shows clear superiority of single-core over
multi-core planners at the time of writing.

Note that these analyses were performed using the same time bounds. This observation is
definitely relevant: “Assuming you have a good handle on how to distribute the workload [. . . ],
multi-core planning essentially means increasing the runtime [. . . ] bound. So the question is if,
e.g., you can find significantly better plans in 4 h vs. 30 min if you compare an 8-core planner to
a 1-core planner with a timeout of 30 min” (Malte Helmert by e-mail, March 14, 2013). Despite
some differences in how time is treated in both tracks (planners in the sequential multi-core track
were given 30 min of wall-clock time, while the sequential satisficing planners were given 30
min of CPU time), the observation is valid even if it seems unrealistic that sequential multi-core
planners could achieve linear increases in speed. From the results outlined above, it is clear that
state-of-the-art multi-core planners perform worse than single-core satisficing planners for the
same time bounds, needless to mention they do if the satisficing planners are given more time
proportionally to the number of available cores.

The fact that the winner of the sequential satisficing track surpassed the performance of the
winner of the sequential multi-core track (at least in terms of both coverage and the official IPC

42



score, and in terms of plan quality when considering the tasks solved by both planners) is not
of great concern. The history of the IPC shows that classical planners are highly engineered in
terms of data structures and are difficult to beat in the first editions of new tracks.

6. Discussion of the scoring schema

This section critically analyzes the scoring schema used at IPC-2011, considers a number
of alternatives, and discusses whether the results might have been different. However, it should
be noted that the participants were aware of the scoring schema well ahead of the submission
deadline, so it is reasonable to assume that their strategies were somehow tailored towards it.
The following discussion pursues two goals: (i) a study of the robustness of the official results;
and (ii) the provision of additional data on the impact of different metrics that might serve as a
criticism of the results of IPC-2011 and an inspiration for new measures in future competitions.
A preliminary discussion of the scoring schema has been already presented [44]. This section
reviews the concepts presented there but the most important contribution is how they lead to the
definition of alternative criteria and the comparison in practice with those alternatives.

Although the scoring schema (Section 2.3) primarily serves to declare a winner and a runner-
up, it should faithfully reflect the performance of all planners to be effective. We make the
following observations.

OBSERVATION I. The official scoring schema is not linear and tends to favor planners that
effectively solve instances with low optimal cost, provided that other planners deviate from it,
even if only slightly [44]. Consider two planners A and B for four planning tasks. Planner A finds
solutions with a total cost equal to 1, 2, 10, and 11, whereas planner B generates plans of quality
2, 4, 6, and 8. The second planner tends to create plans that are shorter and, indeed, the median
and mean of its cost distribution equal 5, while the mean and median of the first planner equal
6. Assuming that the optimal costs are 1, 2, 6, and 8, respectively, planner A would be awarded
1
1 +

2
2 +

6
10 +

8
11 = 3.32, whereas planner B would get 1

2 +
2
4 +

6
6 +

8
8 = 3, which is less than 3.32, in

contrast to the expected outcome. From this example it is clear that the scoring schema is more
sensitive to differences when the optimal solutions are shorter than when they are larger.

OBSERVATION II. The official score regards all problems as being equally important, but this
is not necessarily true. A clear example of this inefficiency is given in Section 4.5.1, in which
planning tasks requiring concurrency were finally taken into account to provide an additional
award beyond the ranking computed according to the official score.

OBSERVATION III. The official score requires that the optimal solutions are known before-
hand, and these can be difficult to derive in some cases. It is straightforward to prove that the error
produced when not using the optimal solutions as a reference is equal to the quotient Cbest/C∗,
where Cbest is the cost of the best plan found and C∗ is the optimal cost. To prove this, observe
that the score for planner p when using the best solution found as a reference for a specific
planning task i is

S p
i =

Cbest

(Cbest + δ
p
i )
,

where δp
i is the excess committed by planner p over the best solution found (and necessarily

equal to zero for at least one planner) when solving instance i. That is, (Cbest + δ
p
i ) denotes the

cost of the plan generated by planner p for planning instance i. The theoretical score for planner
p should be computed as

43



S p∗

i =
C∗

(Cbest + δ
p
i )
.

From the preceding expressions, we have

S p
i

S p∗
i

=
Cbest

C∗
,

so that planner p is assigned a score that is affected by a factor equal to the ratio of the cost of the
shorter plan found to the cost of the optimal solution. Since Cbest ≥ C∗ by definition, not using
the optimal solutions as a reference increases the score for all planners. This observation has two
immediate consequences.

• Although all planners see their score affected by the same constant, this value can be
different for different planning tasks and can induce a final ranking that differs from the
theoretical one.

For clarity, assume that two planners, A and B, solve two different tasks. Assume further
that A solves both tasks with total costs of 100 and 110, respectively, and B finds solutions
with total costs 120 and 100. The best solution found is 100 for both planning tasks, so that
the score for A is sA =

100
100 +

100
110 = 1.909. Likewise, B is awarded sB =

100
120 +

100
100 = 1.8333

points, so the first planner would be declared the winner. Assume, however, that both tasks
can be optimally solved with action costs equal to 20 and 50, respectively. In this case, the
score for each planner for each planning task decreases by a factor equal to 100/20 and
100/50, respectively. Thus, the theoretical score for the first planner is s∗A =

20
100 +

50
110 =

0.6545 and the second planner should be awarded s∗B =
20

120 +
50
100 = 0.6666 points. The

second planner performs better (although marginally in this example) than the first when
considering the cost of the optimal solutions. From a fair evaluation perspective, this
is problematic, since it can violate the decision-theoretic axiom of the independence of
irrelevant alternatives [44].

Assume that the outcome of a planning competition is such that P1 wins by narrowly
outscoring P2. Assume further that the same competition is repeated, but this time with
an additional planner P3 that is clearly worse overall compared to P1 or P2, but improves
over the best known solutions for a few problems. This can affect the balance between
P1 and P2 in such a way that P2 becomes the winner. In other words, the additional
participant P3 influences which of P1 and P2 is considered the best planner. This type
of situation is highly undesirable since it can introduce strategic considerations into the
competition that run counter to its scientific goals. For example, a team of researchers
might refrain from entering planner P into the competition because this might adversely
affect the performance of another planner Q entered by the same team of researchers.

A good way to avoid or reduce such quandaries is to use strong domain-dependent solvers
to find high-quality (or even optimal) reference plans, so that the best known solutions will
not be ones (uniquely) found by the participating planners. Many such specially developed
domain-dependent solvers, and in some cases human-generated solutions, were used at
IPC-2008 for this reason. However, no optimal solver was developed for IPC-2011 [44].

44



• An unwanted effect of not using optimal solutions as a reference baseline is that the fi-
nal score is not properly scaled over the optimal performance, but instead over the best
performance observed.

In the preceding example, the scores sA = 1.909 and sB = 1.8333 are too close to the
maximum achievable score of 2, which suggests that both planners perform very well but
we can only say that they perform similarly. However, the scores obtained according to the
optimal solutions, s∗A = 0.6545 and s∗B = 0.6666, have a more meaningful interpretation:
both planners, with similar performance, are far from the optimal solutions.

In the following analysis, planners are ranked according to an additional number of metrics.
To justify the various alternatives, we note that while IPC-2011 had an emphasis on plan quality,
other metrics can be considered for different needs.

• Coverage: this function awards one point to each planner that solves the current task and
zero otherwise.

This metric is not affected by OBSERVATION I since all planners are awarded either one
point or none per planning task regardless of their computation effort or that of competi-
tors. Likewise, the metric is not affected by OBSERVATION III: even if we assume that all
planning tasks are solvable, the ratio Cbest/C∗15 equals either one (if at least one planner
finds a solution) or zero (if a planning task is not solved by any entrant), so that the score
for all planners is never affected. However, it does not address OBSERVATION II, since all
planning tasks are considered to be equal.

• Time: this function computes the score for a planner for a given task as the quotient

1

1 + log
(

T
T ∗

) ,
where T is the time taken by the planner to solve a particular planning task and T ∗ is the
minimum time required by any planner to solve the same task. Since time differences
can become arbitrarily large, logarithms are used for scaling time scores properly. In this
metric, times of less than 1 s are considered to be negligible and are normalized to be equal
to 1. This was the official metric for evaluating time performance in the learning track in
IPC-2008.

This metric makes an explicit effort to address OBSERVATION I by taking a logarithm of
the ratio that represents the speed of each planner in relation to the fastest one. However,
with regard to OBSERVATION II it considers all planning instances to be equally important,
neglecting the importance of solving the tasks that were found to be particularly hard
by other planners. Finally, OBSERVATION III is irrelevant since there is no notion of an
optimal solution here and comparison with the best observed performance makes sense.

• QT: this function computes for each planner and task a tuple (Q,T ), where Q denotes the
quality of the best solution found by a given planner and T is the time taken by that planner

15In this particular case, Cbest should be read as “1 if this planning task is solved by any entrant and zero otherwise”;
similarly, we assume that C∗ is always equal to 1, since all planning tasks are solvable by hypothesis.

45



FDSS-1 FDSS-2 SELMAX M&S LMCUT FD-AUTOTUNE
Coverage 185 182 169 169 167 166
Time 148.67 146.79 125.60 140.57 130.47 127.43
QT 156 153 140 140 138 137

FORKINIT BJOLP LMFORK GAMER IFORKINIT CPT4
Coverage 158 151 148 148 144 44
Time 103.33 114.76 79.09 76.61 110.40 36.49
QT 129 122 119 119 115 15

Table 8: Score for all entrants in the sequential optimal track with regard to the following metrics: Coverage, Time, and
QT

to find it. If no solution is found, constant values that represent infinitely bad quality and
time are assigned. Next, this metric awards each planner a score that equals the quotient
of the number of distinct tuples a planner Pareto-dominates and the maximum number of
distinct tuples Pareto-dominated by any planner with regard to the same planning task. In
the current context, (Q,T ) is said to Pareto-dominate (Q′,T ′) if and only if Q ≥ Q′ and
T < T ′.

The normalization for this metric results in a relatively small penalty for planners that
Pareto-dominate only a few tuples if the maximum number of dominances is small. This
is why only the number of distinct tuples is considered when computing the Pareto domi-
nance, so that the effect of OBSERVATION I is diminished. However, the metric explicitly
addresses OBSERVATION II by making comparisons with the performance of all the other
planners one by one, instead of comparison with the best performer per instance. However,
it does not address OBSERVATION III, since it uses the best observed quality instead of the
optimal quality.16

Recall from the different subsections devoted to each track in Section 4 that the coefficient
for correlation between the official competition metric and Coverage was very close to 1. To
provide additional evidence of the correlation between these metrics, the Spearman rank-order
correlation test was used (Appendix E). Detailed data on the results for these metrics for all
planners and domains are available in the RESULTS section of the competition website17 for all
tracks. The following analysis provide just an overview of the main findings.

Table 8 lists the score for all entrants in the sequential optimal track according to the metrics
Coverage, Time and QT; Score has been omitted because it is equal to Coverage. The first
observation is that the QT score is perfectly correlated with the Coverage score: in this track,
all plans have strictly the same quality and therefore Pareto dominance is not feasible unless one
planner effectively solves a problem and at least another one does not. In spite of the number of
planners that did not solve a particular task, the tuple that represents their performance is unique
and is symbolized by arbitrarily large constants. Thus, the number of distinct Pareto-dominated
tuples is always equal to 1. The score given by the metric QT equals the Coverage minus the

16An interesting remark here is that addition of a fictitious tuple (Q∗,T ∗), which denotes the cost of the optimal
solution, does not work either, since this would penalize the planners that yield optimal solutions. This occurs because
the spirit of OBSERVATION III emphasizes that we ignore whether one solution is optimal or not.

17http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results

46

http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results


LAMA-2011 FDSS-1 FDSS-2 FD-AUTOTUNE-1
Score 216.33 202.08 196.00 185.09
Coverage 250 232 233 223
Time 155.27 99.63 137.26 129.59
QT 207.98 163.73 180.79 172.65

ROAMER FD-AUTOTUNE-2 FORKUNIFORM PROBE
Score 181.47 178.15 177.91 177.14
Coverage 213 193 207 233
Time 118.81 103.84 113.67 154.74
QT 170.38 151.96 158.11 185.35

ARVAND LAMA-2008 LAMAR RANDWARD
Score 165.07 163.33 159.20 141.43
Coverage 190 188 195 184
Time 77.46 101.76 115.68 102.40
QT 137.74 151.98 150.55 138.16

BRT DAEYAHSP CBP2 YAHSP2
Score 116.01 101.83 98.34 94.97
Coverage 157 120 135 138
Time 74.38 39.69 59.92 99.48
QT 115.83 74.82 90.18 96.35

YAHSP2-MT CBP LPRPGP MADAGASCAR-P
Score 94.14 85.43 67.07 65.93
Coverage 137 123 118 88
Time 97.07 56.84 72.68 77.91
QT 95.51 81.24 72.17 65.37

POPF2 MADAGASCAR CPT4 SATPLANLM-C
Score 59.88 51.98 47.85 29.96
Coverage 81 67 52 32
Time 41.93 48.52 32.41 16.58
QT 50.36 48.56 42.49 21.78

SHARAABI ACOPLAN ACOPLAN2
Score 20.52 19.33 19.09
Coverage 33 20 20
Time 13.91 9.05 8.12
QT 17.71 12.58 12.42

Table 9: Score for all entrants in the sequential satisficing track with regard to the following metrics: the official metric
(Score), Coverage, Time, and QT.

number of instances simultaneously solved by all entrants, for which no Pareto dominance is then
possible. From Table 8 it is evident that the difference between Coverage and QT is always 29.
Indeed, precisely 29 problems were solved by all entrants in this track (the particular problems
are indicated in parentheses with ranges shown by an en dash): NOMYSTERY (000–003, 010–
014), PARCPRINTER (000–004, 007–008), PEGSOL (004), SCANALYZER (000), VISITALL (002–

47



ARVANDHERD AYALSOPLAN PHSFF ROAMER-P
Score 227.07 159.95 130.59 129.06
Coverage 236 184 163 140
Time 131.65 94.63 154.99 54.69
QT 209.94 135.62 132.18 96.35

YAHSP2-MT MADAGASCAR-P MADAGASCAR ACOPLAN
Score 66.44 52.00 17.62 118.58
Coverage 88 67 18 153
Time 74.99 49.92 9.38 110.48
QT 59.57 39.47 9.40 115.06

Table 10: Score for all entrants in the sequential multi-core track with regard to the following metrics: the official metric
(Score), Coverage, Time, and QT.

007, 009, 011) and WOODWORKING (000–002).
The Spearman rank-order correlation coefficient for Coverage and Time is 0.912, which is

statistically significant at α = 0.01, so that the alternative hypothesis that the metrics are corre-
lated is accepted. Owing to the perfect correlation between Coverage and QT, comparison of QT
and Time yielded exactly the same results. As a consequence of the strong (and sometimes even
perfect) correlation among all the metrics, it can be concluded that the planners distinguished in
this track perform equally well under the different metrics.

Table 9 lists the final scores for all entrants in the sequential satisficing track. The Spear-
man rank-order correlation results indicate that all the metrics are very strongly correlated at a
confidence level of greater than or equal to 99.0%.

Table 10 shows the score for all entrants in the sequential multi-core track for all the met-
rics considered. According to the Spearman rank-order correlation test, the correlation between
Coverage and QT is perfect, and these metrics rank the planners in precisely the same order.
Owing to this perfect matching, the correlation between Score and Coverage is exactly the same
as that between Score and QT, which is almost perfect (or even perfect in the Cohen classifica-
tion [45]) with a correlation coefficient of 0.976, which is significant at α = 0.01. Almost the
same observation holds for the relationship between Time and either Coverage or QT, which are
strongly correlated at α = 0.01 (since p = 0.007 < 0.01) with a correlation coefficient equal of
0.857. However, as anticipated by the previous observations, the ranking according to Time is
not the same as the official ranking. Nevertheless, the two-tailed significance for this statistical
test regards them as being strongly correlated at α = 0.05.

Table 11 (page 49) summarizes the final scores for all entries in the temporal satisficing track
for the metrics considered in this section. This is the only case for which the track winner,
DAE YAHSP, greatly benefited from the metric selection. In fact, it ranked first only for the of-
ficial metric, Score, and ranked second for the metrics Coverage and QT, and fourth for Time.
By contrast, one of the two joint runners-up, YAHSP2-MT, was disadvantaged by this selection:
although it was ranked second for Score, it was ranked first according to all the other metrics.
The case of the other runner-up, POPF2, is untypical in the sense that although it was ranked
either third or fourth for the different metrics, it was awarded runner-up position for its excep-
tional performance in domains that required concurrency, which is not necessarily reflected in
the metric selection unless there is a significant number of domains of this type (in IPC-2011,
only three out of 12 domains required concurrency).

48



DAE YAHSP YAHSP2-MT POPF2 YAHSP2 LMTD

Score 126.16 111.14 110.60 98.97 57.75
Coverage 136 145 119 137 62
Time 71.65 136.23 89.31 124.69 36.15
QT 120.89 134.62 112.17 121.80 57.68

CPT4 SHARAABI TLP-GP
Score 44.41 0 0
Coverage 46 0 0
Time 43.48 0 0
QT 42.38 0 0

Table 11: Score for all entrants in the temporal satisficing track with regard to the following metrics: the official metric
(Score), Coverage, Time, and QT.

Assessment of these metrics in the sequential multi-core track revealed perfect correlation
between Coverage and QT according to the Spearman rank-order correlation test. From this
equivalence, it follows that Score and Time are equally correlated with Coverage and QT. All
these correlations were statistically significant at a confidence level of α = 0.01, but the correla-
tion between Score and Time is accepted at a less restrictive confidence level of α = 0.05.

7. Conclusions

Although most of the IPC organizational efforts are carried out by the competition organizers,
the IPC series is a collaborative work. Our feeling is that this is one of the most (if not the most)
important factors that explain its success. Other factors include its fostering of the development
of new planners and its setting of deadlines for their completion. The IPC also contributes a
number of planners to the public domain, as well as new benchmarking sets for performing new
experiments. Overall, the IPC improves our understanding in a few specific ways.

However, the competition might also have some undesirable effects arising from the assump-
tion that the IPC portrays the current state of the art in automated planning. Our view is that
although IPC-2011 evaluated the largest number of planners for the largest number of domains
ever, the competition results cannot be taken as an analysis of the current state of the art. Our
analysis only reflects the performance of the participant planners in a subset of planning tasks
under a particular evaluation set-up. Interesting planning tasks such as timeline-based planning,
continuous planning, and real-time approximate reasoning were not included in the competition,
and other useful evaluation set-ups, such as planning with small time bounds and exploiting
further computational resources such as GPUs, were ignored. Comparisons among the same
planners performed with different criteria might yield different results. This observation refers
not only to formulae such as those discussed in Section 6 but also to the goal of the competition
itself; for example, disproving plan existence has never been addressed in the IPC series [46, 47].
Moreover, the benchmark domains do not cover the full range of possible planning tasks and the
number of realistic domains is still low. In addition, it is very hard to come up with an unbiased
selection of planning domains that does not favor any paradigm in particular. All of this should
be carefully taken into account since one of the main dangers of the IPC being understood as a
study of the current state of the art is that the community might concentrate research too much

49



around the few issues usually considered in the IPC and the successful methods distinguished in
the most recent IPC edition. In other words, the IPC might induce some form of standardization
that would make “our innovation to become boring and predictable” (anonymous comment in a
poll conducted among the planning community, October 2011).

As mentioned above, another advantage of the IPC is that it makes apparent the importance
of contributing with standardized tools for automating the experimentation,18, or creating public
repositories for storing the best known results, among others. Our impression is that work should
move away from organization of the IPC to focus on assisting in daily research. A highly desir-
able situation would be to run the IPC with the same or similar software that researchers use to
conduct their own experiments. Again, this is not without risks and in the current context, stan-
dardized tools should be understood as readily available software for performing in the IPC the
same (or similar) tasks that are performed by the research community. In this regard, tools can
be useful, but distributors should be “begged to put a bold and prominent disclaimer, explaining
that these tools are not a replacement for analysis, effectively reminding researchers to perform
their due diligence” (anonymous comment in a poll conducted among the planning community,
October 2011).

The IPC series represents a good opportunity to perform large-scale experiments from which
it is possible, if not to draw definitive conclusions, at least to derive data for some questions that
are often controversial because they might bias the competition. Let us discuss just a few that
we feel are important. One of these is memory management. Automated planning systems are
nothing more than computing systems. Thus, we extended the concern about the time bound to
the memory bound and for the first time obtained data on memory consumption. Our recommen-
dation, from a general point of view, is to offer as much memory as possible within reasonable
limits (affordable memory in typical architectures at the time of organizing a new competition).
Again, this prevents experimentation and selection of the best adapted planners to small devices
such as mobile phones and tablets, which are already very common.

To shed some light on the most controversial issues, we carefully examined the scoring
schema of the last two IPCs. There have been several criticisms of the scoring schema itself
and the way it was applied in IPC-2008, and a few alternatives have been considered. Although
different metrics might produce different rankings (as observed in the temporal satisficing track),
strong correlations were found across all metrics, although it should be noted that Score and
Time generally exhibited lower correlation. As noted elsewhere, this could result from the eval-
uation set-up for the competition, announced well ahead of the submission deadline. We have
two recommendations for this issue: (i) research should be dedicated to this question to gain new
insights; and (ii) a repository should be set up in which the community could submit and query
best known solutions for a number of planning tasks to improve the evaluation of every planner
with regard to the same planning tasks [48].

Another interesting question often regarded as controversial is selection of the benchmarking
problems. We contributed here with specific means for automatically reusing problems from
previous competitions. In the absence of a better understanding of the difficulty of planning
tasks, a measure such as the Glicko rating system (Section 3.2 and Appendix D) might produce
rankings of this difficulty. The key observation here is that problems can be compared with
regard to their performance against planners. This is not without problems and generalizing this
idea poses some interesting challenges. For example, maintaining a global list of the Glicko

18There are already two good initiatives: LAB https://lab.readthedocs.org/ and the software used for
IPC-2011 http://www.plg.inf.uc3m.es/ipc2011-deterministic/FrontPage/Software.

50

https://lab.readthedocs.org/
http://www.plg.inf.uc3m.es/ipc2011-deterministic/FrontPage/Software


score for every planner might be difficult, because different versions of the same planner might
easily proliferate, making it hard to trace the results and to compute the final score consistently
across all versions. Likewise, there is another issue related to credibility, and the only results to
be taken into account for updating the Glicko score should be from official events such as the
IPC series.

From a technical point of view, IPC-2011 also contributed by introducing a brand new track,
the sequential satisficing multi-core track. A comparison of the performance of the winner of
this track with the winner of its single-core counterpart, the sequential satisficing track, was
performed. The results clearly indicate that research in this field is not yet mature and more
research is needed to exploit additional computational resources.

The arrangement of any competition series is intimately linked to the desire to show progress.
As in other IPCs, a study on scalability was conducted and comparisons were made with the latest
versions of the winners of IPC-2008. Overall, evidence of significant progress was found in the
sequential optimal and satisficing tracks. However, progress seems to be more limited in the
temporal satisficing track, for which quality improved but no evidence of enhanced coverage
was observed. Again, these results should be considered only with regard to the selection of
problems in the last two IPCs.

To conclude, we hope that we have contributed to highlighting the importance of the IPC
series.

Acknowledgements

The deterministic part of the seventh International Planning Competition would have been
impossible without the collaboration of a large number of people. Therefore we wanted to in-
clude this section in appreciation of all the assistance provided by them.

First of all, we want to express our most sincere acknowledgment to all the people who
submitted a planner to the competition.

Also, to those who suggested a domain to be included in the competition, even if some
were not accepted in the end: Bharatranjan Kavuluri suggested the MATCHCELLAR domain;
Frédéric Maris sent us the COOKING and TEMPORAL MACHINE SHOP domains; Jörg Hoffmann
and Hootan Nakhost devised the NOMYSTERY specification; Ron Petrick submitted the domain
CRISP; Héctor Geffner and Nir Lipovetzky coded the VISIT-ALL domain; Amanda Coles and
Andrew Coles sent us the MARKET domain; Héctor Luis Palacios prepared various conformant
domains such as 1-DISPOSE, DISPOSE, GRID, LOOK-AND-GRAB, PUSH-TO and CLASSICAL;
Bhaskara Marthi is behind the TIDYBOT domain; Guy Shani shall be acknowledged for sending
the domains COLORBALLS DOORS, MEDICALPKS150, MEDICALPKS199, SLIDING-DOORS,
UNIX and WUMPUS. At last, but not least, Tomás de la Rosa worked in the FLOORTILE domain.

We do also want to explicitly express our gratitude to Derek Long for his assistance and
support with the automated validation tool VAL.

Also, to Daniel L. Kovacs for making available through the wiki site of the competition a
couple of manuscripts with a formal specification of PDDL 3.1.

Besides, we do feel in debt with Óscar Pérez, Jaime Pons, Roberto Fuentes and, in general,
to the Laboratory of the Computer Science Department of the University Carlos III de Madrid
for their assistance in installing, configuring and maintaining the cluster.

Very importantly as well, to the IPC council for providing extensive comments and offering
a lot of helpful suggestions. In particular, to Malte Helmert for inviting us to his university and
sharing all the material produced at the previous IPC.

51



To all the members of the Planning and Learning research group (PLG) of the University
Carlos III de Madrid for their encouragement and, in so many cases, for being in charge of our
daily duties to allow us to work in the competition. In particular, to Daniel Borrajo for all the
support.

Also, Sergio Núñez and Álvaro Torralba assisted in fruitful discussions regarding the im-
plementation details of a number of planners. Alejandro Calderón provided a lot of insightful
comments about the behaviour of Linux and how it affected our experiments. Other people who
contributed providing further explanations of the behaviour of their planners are Nir Lipovetzky,
Andrew Coles, Eric Xu, Peter Kissman, Stefan Edelkamp, Jussi Rintanen, Vincent Vidal, Yan-
mei Hu, Mario Baioletti, Vidal Alcázar, Frédéric Maris, Richard Valenzano, Charles Gretton and
Richard Dearden.

Amanda Coles and Jussi Rintanen provided a good number of comments to some preliminary
versions of this paper. Also, the reviewers of this paper provided a handful of very good com-
ments in terms both of quantity and quality. All of them greatly enhanced not only the overall
presentation but also the contents. Thanks also to the editor, Gerhard Lakemeyer for his constant
guidance while writing it.

Finally, we have to acknowledge the sponsorship of Decide Soluciones, iActive, the Uni-
versity Carlos III de Madrid and ICAPS. The hardware platform used during the competition
was funded by Spanish Science Ministry under project MICIIN TIN2008-06701-C03-03 and
this work has been also partially supported by the Spanish MINECO project PlanInteraction
TIN2011-27652-C03-02.

Our most sincere and heartfelt thanks to all of them.

References

[1] A. Coles, A. Coles, A. Garcı́a-Olaya, S. Jiménez, C. Linares López, S. Sanner, S. Yoon, A survey of the seventh
international planning competition, AI Magazine 33 (2012) 83–88.

[2] J. A. Baier, S. A. McIlraith, Planning with preferences, AI Magazine 29 (2008) 25–36.
[3] M. Järvisalo, D. Le Berre, O. Roussel, L. Simon, The international SAT solver competitions, AI Magazine 33

(2012) 89–92.
[4] R. Howey, D. Long, M. Fox, VAL: Automatic plan validation, continuous effects and mixed initiative planning

using PDDL, in: The Sixteenth IEEE International Conference on Tools with Artificial Intelligence (ICTAI-04),
Boca Raton (Florida), United States, 2004, pp. 294–301.

[5] Á. Garcı́a-Olaya, S. Jiménez, C. Linares López, The 2011 International Planning Competition, Technical Report,
Universidad Carlos III de Madrid, Madrid, Spain, 2011. Http://hdl.handle.net/10016/11710.

[6] E. Burns, S. Lemons, W. Ruml, R. Zhou, Best-first heuristic search for multicore machines, Journal of Artificial
Intelligence Research (JAIR) 39 (2010) 689–743.

[7] R. Valenzano, N. Sturtevant, J. Schaeffer, K. Buro, Simultaneously searching with multiple settings: An alternative
to parameter tuning for suboptimal single-agent search algorithms, in: Proceedings of the Twentieth International
Conference on Automated Planning and Scheduling (ICAPS-10), Toronto, Canada, 2010, pp. 177–184.

[8] A. Kishimoto, A. Fukunaga, A. Botea, Evaluation of a simple, scalable, parallel best-first search strategy, Artificial
Intelligence 195 (2013) 222–248.

[9] D. Sulewski, S. Edelkamp, P. Kissmann, Exploiting the computational power of the graphics card: Optimal state
space planning on the GPU, in: Proceedings of the Twenty-First International Conference on Automated Planning
and Scheduling (ICAPS-11), Freiburg, Germany, 2011, pp. 242–249.

[10] J. Rintanen, Complexity of concurrent temporal planning, in: Proceedings of the Seventeenth International Con-
ference on Automated Planning and Scheduling (ICAPS-07), Providence (Rhode Island), United States, 2007, pp.
287–295.

[11] E. Keyder, H. Geffner, Soft goals can be compiled away, Journal of Artificial Intelligence Research (JAIR) 36
(2009) 547–556.

[12] M. Fox, D. Long, D. Magazzeni, Plan-based policies for efficient multiple battery load management, Journal of
Artificial Intelligence Research (JAIR) 44 (2012) 335–382.

52



[13] K. Tierney, A. J. Coles, A. I. Coles, C. Kroer, A. Britt, R. M. Jensen., Automated planning for liner shipping
fleet repositioning, in: Proceedings of the Twenty-Second International Conference on Automated Planning and
Scheduling (ICAPS-12), Atibaia, São Paulo, Brazil, 2012, pp. 279–287.

[14] P. Cheeseman, B. Kanefsky, W. M. Taylor, Where the Really hard problems are, in: Proceedings of the Twelfth
International Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia, 1991, pp. 331–337.

[15] T. Bylander, A probabilistic analysis of propositional STRIPS planning, Artificial Intelligence 81 (1996) 241–271.
[16] J. K. Slaney, S. Thiébaux, On the hardness of decision and optimisation problems, in: Proceedings of the Thirteenth

European Conference on Artificial Intelligence (ECAI-98), Brighton, United Kingdom, 1998, pp. 244–248.
[17] J. Rintanen, Phase transitions in classical planning: an experimental study, in: Principles of Knowledge Represen-

tation and Reasoning: Proceedings of the Ninth International Conference (KR-04), Whistler (British Columbia),
Canada, 2004, pp. 710–719.

[18] J. Hoffmann, S. Edelkamp, S. Thiébaux, R. Englert, F. dos S. Liporace, S. Trüg, Engineering benchmarks for
planning: the domains used in the deterministic part of IPC-4, Journal of Artificial Intelligence Research (JAIR)
26 (2006) 453–541.

[19] M. Roberts, A. Howe, Learning from planner performance, Artificial Intelligence 173 (2009) 536–561.
[20] F. Calimeri, G. Ianni, T. Krennwallner, F. Ricca, The answer set programming competition, AI Magazine 33 (2012)

114–118.
[21] T. Bylander, The computational complexity of propositional STRIPS planning, Artificial Intelligence 69 (1994)

165–204.
[22] M. Helmert, Complexity results for standard benchmark domains in planning, Artificial Intelligence 143 (2003)

219–262.
[23] M. Helmert, New complexity results for classical planning benchmarks, in: Proceedings of the Sixteenth Inter-

national Conference on Automated Planning and Scheduling (ICAPS-06), Ambleside, The English Lake District,
United Kingdom, 2006, pp. 52–61.

[24] J. Hoffmann, Where ’ignoring delete lists’ works: Local search topology in planning benchmarks, Journal of
Artificial Intelligence Research (JAIR) 24 (2005) 685–758.

[25] J. Hoffmann, Analyzing search topology without running any search: On the connection between causal graphs
and h+, Journal of Artificial Intelligence Research (JAIR) 41 (2011) 155–229.

[26] M. Helmert, R. Mattmüller, Accuracy of admissible heuristic functions in selected planning domains, in: Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08), Chicago (Illinois), United
States, 2008, pp. 938–943.

[27] W. Cushing, S. Kambhampati, Mausam, When is temporal planning really temporal?, in: Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, 2007, pp. 1852–
1859.

[28] M. Helmert, G. Röger, How good is almost perfect?, in: Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI-08), Chicago (Illinois), United States, 2008, pp. 944–949.

[29] S. Richter, M. Westphal, The LAMA planner: Guiding cost-based anytime planning with landmarks, Journal of
Artificial Intelligence Research (JAIR) 39 (2010) 127–177.

[30] A. E. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and temporal action graphs in LPG,
Journal of Artificial Intelligence Research (JAIR) 20 (2003) 239–290.

[31] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic search, Journal of Artificial
Intelligence Research (JAIR) 14 (2001) 253–302.

[32] M. E. Glickman, Parameter estimation in large dynamic paired comparison experiments, Applied Statistics 48
(1999) 377–394.

[33] J. Hoffmann, S. Edelkamp, The deterministic part of IPC-4: An overview, Journal of Artificial Intelligence
Research (JAIR) 24 (2005) 519–579.

[34] R. E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers 35
(1986) 677–691.

[35] M. Helmert, P. Haslum, J. Hoffmann, Flexible abstraction heuristics for optimal sequential planning, in: Proceed-
ings of the Seventeenth International Conference on Automated Planning and Scheduling (ICAPS-07), Providence
(Rhode Island), United States, 2007, pp. 176–183.

[36] R. Nuzzo, Scientific method: Statistical errors, Nature 506 (2014) 150–152. February.
[37] D. Long, M. Fox, The 3rd international planning competition: Results and analysis, Journal of Artificial Intelli-

gence Research (JAIR) 20 (2003) 1–59.
[38] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Deterministic planning in the fifth international

planning competition: PDDL3 and experimental evaluation of the planners, Artificial Intelligence 173 (2009)
619–668.

[39] M. Fox, D. Long, PDDL2.1: An extension to PDDL for expressing temporal planning domains, Journal of Artificial
Intelligence Research (JAIR) 20 (2003) 61–124.

53



[40] W. Cushing, D. S. Weld, S. Kambhampati, Mausam, K. Talamadupula, Evaluating temporal planning domains,
in: Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling (ICAPS-07),
Providence (Rhode Island), United States, 2007, pp. 105–112.

[41] B. R. Kavuluri, Required concurrency without a scheduler, in: Proceedings of the Twenty-eighth Workshop of the
UK Special Interest Group on Planning and Scheduling (PlanSig-10), Brescia, Italy, 2010, pp. 71–78.

[42] D. E. Smith, D. S. Weld, Temporal planning with mutual exclusion reasoning, in: Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI-99), volume 1, Stockholm, Sweden, 1999, pp.
326–333.

[43] Y. Hu, M. Yin, D. Cai, On the discovery and utility of precedence constraints in temporal planning, in: Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco (California), United States, 2011,
pp. 1788–1789.

[44] C. Linares López, S. Jiménez, M. Helmert, Automating the evaluation of planning systems, AI Communications
26 (2013) 331–354.

[45] J. Cohen, A power primer, Psychological Bulletin 112 (1992) 155–159.
[46] C. Bäckström, P. Jonsson, S. Sthlberg, Fast detection of unsolvable planning instances using local consistency, in:

Proceedings of the Sixth Annual Symposium on Combinatorial Search (SOCS-13), Leavenworth (Washington),
United States, 2013, pp. 29–37.

[47] J. Hoffmann, P. Kissmann, A. Torralba, ”distance”? who cares? tailoring merge-and-shrink heuristics to detect
unsolvability, in: Proceedings of the Twenty First European Conference on Artificial Intelligence (ECAI-14),
Prague, Czech Republic, 2014, pp. 441–446.

[48] J. Hoffmann, A tough nuts track for the IPC, in: The ICAPS-07 Workshop International Planning Competition:
Past, Present and Future, Providence (Rhode Island), United States, 2007.

54


	Introduction
	The deterministic part of the seventh International Planning Competition
	Format
	Participants
	Evaluation

	Benchmarks
	Selection of domains
	Selection of problems

	Results
	Format of the results presentation
	Performance of the sequential optimal planners
	Number of problems solved and quality
	Analysis of CPU time
	Analysis of memory performance
	Distinguished performers in the sequential optimal track

	Performance of the sequential satisficing planners
	Number of problems solved and quality
	Analysis of CPU time
	Analysis of memory performance
	Distinguished performers in the sequential satisficing track

	Performance of the sequential multi-core planners
	Number of problems solved and quality
	Analysis of CPU time
	Analysis of memory performance
	Distinguished performers in the sequential multi-core track

	Performance of the temporal satisficing planners
	Number of problems solved and quality
	Analysis of CPU time
	Analysis of memory performance
	Distinguished performers in the temporal satisficing track


	Scalability analysis
	How good is the performance of the IPC-2011 planners?
	Sequential optimal track
	Sequential satisficing track
	Temporal satisficing track

	How good is the performance of the sequential multi-core planners?

	Discussion of the scoring schema
	Conclusions

