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ABSTRACT

Social Autonomous Robotics aims to deploy robots in scenarios that involve intensive and continuous interaction with humans.
To control the behaviour of robotic platforms in such environments, the use of automated planning (AP) within a control archi-
tecture has been proposed as an effective mechanism. However, the design of AP models is time-consuming and typically carried

out by domain experts and engineers. A significant amount of knowledge must be acquired in order to properly define the use

case description by specifying the different tasks performed by the robot. In this paper, we present DEVPLAN, a framework for

graphically designing robotic use cases and configuring the platform for the desired execution. DEVPLAN provides an interface

that allows domain experts, in collaboration with knowledge engineers, to use state transition diagrams to specify the tasks a

robot can perform and define recovery strategies for exogenous events that disrupt normal execution. This graphical design is
automatically translated into the standard Planning Domain Definition Language (PDDL). Additionally, to facilitate the inte-
gration of the AP model with the robot's control architecture, DEVPLAN includes a module for generating the configuration files
required to set up the control system. The proposed framework has been successfully used to design and deploy two different use

cases in a real environment in a retirement home.

1 | Introduction

In recent years, there has been a growing interest in robots op-
erating in public spaces. A key area of research focuses on Social
Autonomous Robotics (SAR) (Breazeal et al. 2016), which re-
quires these robots to adapt their actions based on the sensor
data they collect. They must show flexible capabilities and ro-
bust behaviours even in dynamic and constantly changing en-
vironments (Ingrand and Ghallab 2017). Automated Planning
(AP) (Ghallab et al. 2004) has been used previously to achieve
this autonomous behaviour (Bandera et al. 2016; Cashmore
et al. 2015; Chen et al. 2016; Gonzélez et al. 2017; Mohseni-Kabir
et al. 2020; Rajan and Py 2012; Tran et al. 2017) by using a prob-
lem solver and a control architecture: the problem solver creates

a plan of actions to be performed, while the control architecture
deals with execution and monitoring, adapting the plan to the
changing environment and replanning if necessary.

However, developing autonomous systems for Human-Robot
Interaction (HRI) scenarios remains a challenging task (Tapus
et al. 2007), particularly in what relates to the time-consuming
knowledge engineering process behind the development of
these systems (Kambhampati 2007; Bhatnagar et al. 2022). In
contrast to more typical uses of knowledge engineering such
as classification or diagnosis, AP focuses this process on the
creation of models to reason about actions, facts, and states,
which will ultimately be processed by specific reasoning en-
gines to synthesise a solution plan (McCluskey et al. 2017).
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FIGURE1l | Common development process to build AP-based social
robotics use cases.

This process involves cooperation between domain experts,
knowledge engineers, and software developers. The result of
this procedure is a formal specification of the planning task,
in general using the Planning Domain Description Language
(PDDL) (McDermott et al. 1998), the standard action descrip-
tion language adopted by the community. In addition, the gen-
erated model has to be integrated into a control architecture
configured to convert the sensor data collected into high-level
data managed by the planner and the actions proposed by the
planner into low-level actions (Figure 1). These challenges
are not limited to the AP technique; they extend to any other
control technique as well. They act as bottlenecks for develop-
ers and pose entry barriers for novice users looking to deploy
Social Robotics use cases. This has led to an increasing de-
mand for frameworks that facilitate seamless robot program-
ming for users (Kramer and Scheutz 2007).

In this paper, we present DEVPLAN, our initiative to simplify
the creation of SAR use cases, thereby encouraging the partici-
pation of experts and knowledge engineers in the development
process. With DEVPLAN, they can directly model the desired
scenario, observe the sequence of actions it generates, and ex-
ecute them with the robot, all without requiring software de-
velopers to manually code the use case. In this approach, the
encoding is handled by a model compiler, as shown in Figure 2.
Using AP as the paradigm to describe the use case and a control
architecture that implements its model, the contributions of this
paper can be summarised as follows:

1. A Use Case representation based on state transition dia-
grams, where the system's tasks are depicted as sets of
workflows.

2. An interface to graphically build such models, represent-
ing the expected behaviour of the robot.

3. An automated compilation from the graphical model into
the Planning Domain Definition Language (PDDL) for-
malisation (McDermott et al. 1998), including features to
operate in dynamic environments.

4. An interface module to create the configuration files re-
quired to configure the control architecture, making it
ready to connect with the robotic platform.

Knowledge Expert

Engineer l
Control AP Graphical
Architecture Model
Model
AP Model |
Compiler N

FIGURE 2 | Proposed development process using the graphical in-
terface, where domain experts actively collaborate with knowledge en-
gineers during the modelling process.

All these contributions are brought together under the
DEVPLAN framework. Throughout this paper, we demon-
strate the validity of the contributions by establishing the fol-
lowing objectives:

« To demonstrate the capability of DEVPLAN in modelling
complex social robotics use cases, we illustrate it using a
collaborative stacking-blocks game that incorporates all the
features of social interaction.

« To assess DEVPLAN with representative users and de-
termine its understandability and intuitiveness for non-
experts, we gave computer science students two use case
specifications to implement in PDDL, as well as through
the proposed interface. Subsequently, they participated in
usability tests to evaluate the method's functionality and
complexity.

« To ensure the correctness and executability of the generated
models, we developed two use cases drawn from the needs
identified in a retirement home. These use cases were cre-
ated from scratch in DEVPLAN and then deployed on a robot
for interaction with older adults in a real environment.

The accomplishment of these objectives demonstrates the fea-
sibility of our work, representing the initial steps towards a no-
code development approach in HRI.

The paper is organised as follows. Section 2 introduces the
concepts of AP and control architectures needed for this
work. Section 3 details the knowledge elicitation to build AP
tasks. Section 4 explains how such knowledge is modelled in
DEVPLAN though the concept of options. Once the model is in
the framework, Section 5 contains how DEVPLAN compiles the
graphical model into the corresponding PDDL formalisation.
After that, Section 6 details how such generated model can be
integrated into a real robotic platform, without the need of fur-
ther code. Section 7 involves the evaluation performed accord-
ing to the objectives, divided in usability tests of DEVPLAN with
untrained users and the field trials carried out in a retirement
home. Finally, Section 8 compares the proposed approach with
a previous one based on state machines, and Sections 9 and 10
show the related work and the main conclusions of the work.
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2 | Background

AP deliberative systems must cope with uncertainty, especially
in real-world deployments, and depend on a control architecture
to collect external information for use in the deliberation pro-
cess. In this section, we provide background information on AP,
common approaches to managing uncertainty, and examples of
control architectures.

2.1 | Automated Planning Paradigms

An AP task consists in finding a set of actions, called a plan,
which applied to a given initial state reaches a state where the
goals are achieved. We use the first-order (lifted) planning for-
malism, where a classical planning task is a pair I1 = (D,I),
where D is the planning domain, and I defines a problem in-
stance. A planning domain is a tuple D = (%, P, A); where #
is a type hierarchy; P is a set of predicates defined by their
names and the types of its arguments; and A is a set of ac-
tion schemas. If p(t) € P is an n-ary predicate and t = ¢, ... , ¢,
are either typed constants or typed free variables, then p(t)
is an atom. An atom is grounded if its arguments do not
contain free variables. Action schemas a € .4 are tuples
a = (par(a), pre(a), eff(a)), defining the action parameters (a
finite set of free variables) par(a); the preconditions pre(a);
and effects eff(a)). pre(a) is a set of atoms representing what
must be true in a state to apply the action. eff(a) represent the
changes produced in a state by the application of the action
(added and deleted atoms).

Additionally, we also consider a set of partial states P, composed
by sets of lifted atoms that are expected to be grounded with
the corresponding objects during the execution of the system.
A problem instance is a tuple I = (O, .7, G), where O is a set of
typed constants representing problem-specific objects; .7 is the
set of ground atoms in the initial state; and finally, G is the set of
ground atoms defining the goals.

Grounded actions a are obtained from action schemas a by
substituting the free variables in the parameters of the action
schema by constants in @. A grounded action a is applicable in
an state sif pre(a) C s. When a grounded action is applied to s we
obtain a successor state s/, defined as s’ = {s\ del(a)} U add(a).
A plan x is a sequence of grounded actions a,, ..., a, such that
each a; is applicable to the state s;_; generated by applying
a,, ... ,a;_; to F; a, is applicable in .#; and the consecutive ap-
plication of all actions in the plan generates a state s, contain-
ing the goals G C s,

2.2 | Dealing With Uncertainty in AP

While there are various paradigms within the field of Automated
Planning (AP), the definition provided above assumes that ac-
tion outcomes are known and the environment is deterministic,
thus requiring no observability. However, the real world is non-
deterministic, with actions prone to failure and external agents
capable of altering the environment unexpectedly. Human-Robot
interactive tasks are good examples of such scenarios, where ac-
curately predicting human actions is challenging. Consequently,

observations become essential for validating the true state of the
world. In this way, planning with sensing has been studied in
the literature under Contingent Planning, where a real execu-
tion is a combination of actions and observations (Bonet and
Geffner 2013). Solving the Belief Tracking for Planning problem
means determining the possible observations that may result
after the execution, identifying applicable actions and assess-
ing goal achievement, ultimately resulting in a complete policy.
Dealing with the uncertainty of the world has also been ad-
dressed through Probabilistic Planning models, typically formu-
lated using Markov Decision Processes (MDP) (Puterman 1994)
or languages like PPDDL (Younes and Littman 2004) or RDDL
(Sanner 2011), an extension of PDDL designed to express prob-
abilistic planning domains that handle uncertainty with prob-
abilistic action effects. It permits a management of possible
unforeseeable events, but requires accurate probabilistic spec-
ifications to be established beforehand. Fully Observable Non-
Deterministic planning (FOND) (Rintanen 2004) is commonly
used to represent non-deterministic domains where each action
has multiple possible outcomes that must be explicitly stated in
the PDDL domain model. For example, the action of picking up a
block may have two possible outcomes: successfully picking it up
or accidentally dropping it. In this work, we not only represent
the possible outcomes of actions but also account for exogenous
events that can occur at any time. For instance, if the robot is
greeting a child, the child leaving the room is not a possible out-
come of the greeting action but rather an exogenous event that
interrupts it. Epistemic Planning (Bolander and Andersen 2011)
provides tools for reasoning about agents' knowledge and be-
liefs, but is not well suited for our objectives. DEVPLAN focuses
on modelling observable actions and exogenous events that dis-
rupt the nominal behaviour of a single robot system. Since our
approach does not involve reasoning about internal knowledge
states or multiple agents, the added complexity of epistemic
planning is unnecessary.

A popular way to tackle the inherent uncertainty of the world is
to rely on deterministic planning and replan upon unexpected
situations (Geffner and Bonet 2013), which provides efficiency in
real-time tasks. In this case, the model design assumes a nominal
behaviour: a desired flow of actions with enough likelihood of
being executed without interruptions (Garcia-Olaya et al. 2019).
If an unexpected state is observed during the execution of the
plan and the remaining plan cannot be applied, a replanning
process can be performed to detect failures or even opportunities
(Yoon et al. 2007). Although it may seem simplistic, this planning
and replanning approach has been used in many real applica-
tions (Bandera et al. 2016; Cashmore et al. 2015; Chen et al. 2016;
Gonzélez et al. 2017; Mohseni-Kabir et al. 2020; Rajan and
Py 2012; Tran et al. 2017; McGann et al. 2008). Although other
models typically focus on computing policies with belief states
that may never be reached during execution (Muise et al. 2014),
the present work takes advantage of this approach, relying on the
speed and efficiency of deterministic planners.

2.3 | Replanning Strategies
If uncertainty is not inherently incorporated into the domain

model, discrepancies may occur between the expected state
value and its observed value, rendering the current plan invalid.
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In such cases, two primary options are available: plan repair or
replanning from scratch (Fox et al. 2006). Plan repair involves
adapting the plan to the new situation based on environmen-
tal information while minimising alterations to the original
plan. In contrast, replanning entails generating an entirely new
plan, without considering the previous one. Another alterna-
tive is based on the concept of planning with reuse (Borrajo and
Veloso 2012), assuming that similar past solutions can guide
the search for a new plan. However, it is important to note that
current plan repair/replanning techniques operate under the as-
sumption that “the plan that has already been executed cannot
be retracted, so we can always consider the problem as though
the current state were the initial state and the remainder of the
unexecuted plan were the whole of the original plan” (Borrajo
and Veloso 2012).

However, there are cases where simply setting the current state
as the initial state may not suffice, and the execution needs to
be recovered from a point earlier than where the interruption
occurred. For instance, if readers of this paper are interrupted at
this point and return to it tomorrow, they may choose to restart
not precisely at this paragraph but maybe at the beginning of
the section, just to place themselves again in the context of the
paper. In such situations, when restoring the flow, the new ini-
tial state may not be the current state but rather a previous one.
In this work, we introduce a novel AP compilation to address
this challenge.

2.4 | Monitoring and Execution Architectures

A planning approach with replanning upon failure requires
monitoring and execution control architectures. Examples in-
clude PELEA (Celorrio et al. 2008) and ROSPLAN (Cashmore
et al. 2015), both using Classical Planning (Ghallab et al. 2004).
They typically involve a planner and a formal planning model to
generate a sequence of actions to be performed while verifying
the correct execution of the initial plan. Each action is sent to
the robotic platform, assuming that no interruptions will occur
during execution. To confirm whether the plan is progressing as
expected, environmental information is obtained from sensors.
If discrepancies arise between the expected state value and its
observed value, the current plan may no longer be valid, trigger-
ing a replanning process to replace it with a new plan to address
the current situation.

MLARAS (Multi-layered Architecture for Autonomous
Systems), a similar AP architecture to the ones mentioned,
was developed in the context of the NAOTHERAPIST project
(Gonzélez et al. 2017). This architecture integrates planning,
execution, monitoring, replanning and learning in different
layers of abstraction. Normally, the high-level layer is for delib-
eration, and a low-level layer is for information that the robot
can directly work with. To perform high-level deliberation
and translation between layers, MLARAS uses PELEA as a sub-
architecture. The general process is shown in Figure 3, where
the planner returns the plan = = {ay,a,, ... ,a,}. Each g, €
is translated into low-level commands that the robot can exe-
cute, which are sent to the robotic platform. The information
from the robot sensors is translated into high-level predicates
for monitoring purposes. Although initially implemented for
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FIGURE 3 | Deliberation layer of the MLARAS. The execution mod-
ule translates data between high and low levels and monitors plan

progress.

a specific project, MLARAS was designed as a generic archi-
tecture, which makes it easily adaptable for integration into
any robot and in any use case through a minimal configura-
tion process. This flexibility led us to choose this architecture
for integrating the use case definitions in the retirement home
robot. However, before proceeding, we needed to define the
use case models. The next section describes our approach to
use case formalisation.

3 | Use Case Design Though Classical Automated
Planning Concepts

In this section, we show the AP knowledge that needs to be
specified and how it is used to construct the workflows that de-
fine the use case. To provide a clearer illustration, we will use
a running example: a social robotics use case involving stack-
ing blocks in a specific order to encourage collaboration among
participants.

3.1 | Domain Elicitation

The domain represents the information that can be involved in
the use case and how it changes as data are added, modified,
or deleted by actions. According to the aforementioned, the
user has to specify a planning domain represented by the tuple
D= (#,P, A). Additionally, we consider a set of partial states
P, that are expected to be transited during the execution of the
use case.

3.1.1 | Type Hierarchy (&)

It defines the kind of objects involved in the execution (places,
people, items, etc.), that can be related with other object types.
Object-type hierarchies can be created to define generalisations
and specialisations. For example, in a use case where robots and
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children play together, the child and robot types can both belong
to the player super-type.

3.1.2 | Predicates (P)

They are mostly used to create relations between objects useful
during the execution, or to describe features or situations that
involve them, the environment or internal control knowledge.
Using predicates logic, users are asked to specify the predicate
name and the free-typed variables t =t¢,, ... ,t, they involve.
A declaration like (holding ?b—block ?p—player) represents
a lifted atom p(t) € P which can be grounded with objects of
type block and player, meaning that a player is holding a certain
block: (holding block02 player01). Generally speaking, we can
find different categories of predicates

+ Static/Dynamic: The former represents persistent in-
formation that does not change as a result of action ex-
ecutions, such as the locations of rooms in a building.
Dynamic predicates, on the other hand, can be added,
removed, or modified by the application of actions or ex-
ternal events.

« Internal/Sensed: Internal predicates are used to represent
internal data explicitly calculated and updated within the
system, such as determining which player's turn it is to
move a block. Sensed predicates, on the other hand, repre-
sent characteristics of the real world and can only be up-
dated through sensing. For example, they can represent
two blocks stacked one upon the other or external events
interrupting the use case, such as a child suddenly leaving
the room. It is important to consider these types of sensed
events to build robust models.

The user must distinguish between static/dynamic and
sensed/internal predicates during predicate specification in
DEVPLAN, depending on the type of information being rep-
resented. This distinction is crucial when recovering from
errors, as it helps differentiate between information collected
from the environment and that which is internally managed
by the system.

3.1.3 | Partial States (P,)

Interpreted as a conjunctive formula, a partial state is speci-
fied as a subset of lifted atoms grounded with the current true

information, representing the facts that the agent must consider.
The following example illustrates a lifted partial state in which
both the child and the robot are ready to start the game. This
state will be instantiated with the current child participating in
the defined game. Other components of the full state, such as the
location of objects, may be omitted since they are not relevant to
the current reasoning step.

(detected-child ?c - child)
(training-area ?1 - location)
(game ?g - game)

(robot-at ?1 - location)
(child-at ?1 - location)
(robot-idle)

3.1.4 | Actions (A)

Following the scheme a = (par(a), pre(a), eff(a)), a simple way
to elicit them is to ask the expert what characteristics the sce-
nario must have to perform an action (pre(a)) and how the state
changes after its execution (eff(a)). The preconditions must
match a defined partial state pre(a) C ps, ps € P, while the ef-
fects are specified in the description of the action, along with its
name. Parameters are gathered from the lifted typed variables in
both precondition and effects.

Figure 4 illustrates the action that starts the game. The first
box represents a state where the child has been detected. The
child is denoted by the lifted variable c. Both the child and the
robot are located in the same training area, represented by 1.
The robot is idle, and a game (g) has been established. The
start-game action, shown in the diagram, can be executed to
perform changes in the current state. Specifically, it sets the
robot to a training mode, removing the old state and initiating
the game (g). It also introduces a proposition to indicate that
the current phase is playing. As this representation captures
a partial state, additional information (such as the current lo-
cations of blocks or whether the child has been greeted) re-
mains part of the world but is not relevant for the current step.
Therefore, it can be omitted from this state representation and
included only when necessary.

3.2 | Problem Specification

A planning problem provides relevant information for the cur-
rent use case that the domain must consider: the initial state and

greeted r
: start-game time-to-play

greeted-child(c)

training-areal(l) e » started-gamelg)

robot-at(l) robot-training robot-training

child-at(l) ~robot-idle playing

robot-idle started-gamel(g)

CUrrent—game(g) play|ng

FIGURE4 | Representation of two partial states (blue boxes), containing the predicates that must be satisfied to execute the action (arrow).
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the goals to achieve. For each type defined in the domain, users
are required to create associated objects and instantiate predi-
cates based on the current use case. For example, the following
information represents a problem in which a child is engaged in
a single-block game with a robot, featuring four different blocks
labelled A, B, C, and D. In this scenario, blocks A and C are on
the table, while blocks B and D are respectively on top of them.

;Objects

child - child01l
playground - location
blocks - game

A B CD - block

;Initial state

(training-area playground)
(robot-at playground)
(current-game blocks)
(on-table A)

(on B A) (on D C) (on-table C)

Goals may consist of a single predicate or a set of facts that the
agent must achieve. A goal state is a partial state in which all the
goals are true. The entire decision-making process is directed
towards achieving these goals during execution. In the context
of the defined problem, an example of a goal is to complete the
game with a specific arrangement of blocks, such as inverting
the two stacks of blocks: (finish-game blocks) (on A B) (on C D).

The specification of these components forms an agent-based
model that, when integrated into a cognitive architecture,

Nominal flow missing-child x

New corrective flow

enables the system to reason about the behaviour it should ex-
hibit in order to function autonomously.

4 | Graphical Modelling

To simplify the process of creating Automated Planning (AP)
models based on the concepts mentioned above, DEVPLAN in-
troduces workflows as a visual representation of the knowledge
of the use case. Unlike other approaches, such as state machines,
which require a complete specification of states and all possible
transitions, our method recognises that experts may not always
have full knowledge of the entire sequence of actions needed to
solve a problem.

Additionally, external factors can disrupt the normal sequence
of actions, especially in uncontrolled environments. With our
approach, it is not necessary to fully specify states and transi-
tions. Instead, partial definitions with some facts are sufficient
for reasoning about the state and are easier to define. We pro-
pose using disconnected graphs to represent each executable
system task in isolation, allowing the planner to select the most
promising sequence of actions to achieve the goals.

Figure 5 shows the stacking blocks game example as modelled
in DEVPLAN, with the different tasks the robot can perform
depicted in the graphical area. The blue boxes represent partial
states, consisting of the facts that the scenario must satisfy to
execute the subsequent action, as shown in the expanded states
in Figure 4. Each fact is represented by its predicate symbol,
along with the associated lifted-typed variables in brackets. If

oo J o Lo T oo I8

Editor
i denﬁfy—ch'l\d . 9reet-child
7 - + Sta
. _—> identified ~ > -
Domain & o £ greeted 9ame
¢e‘e/’ detected \
Types + time to play
ready
Predicates put-down
unstack . = R =
Functions atacied holding holding putdown block on table
States
change-player
. ey +

Actions current player next player

Problems
. pick-up stack
Robot Config % S ‘N 1
ontable holding holding stack stacked
= stop pla
end 0 + i
‘\_— farewell
end game
finish — sum-up
9ame say-bye
search-child

+

—
missing found

FIGURE 5 | Stacking blocks social robotics use case modelled in DEVPLAN. The left-side menu enables users to define the domain and problem
according to AP concepts, which are displayed in real time in the white area. Blue boxes contain the relevant information each state must hold to

execute the action. Actions are the edges connecting states.
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an atom is preceded by the symbol ~, it indicates that the predi-
cate must not be true at that point to consider the state.

Actions are represented as edges connecting states, illustrating
the expected transitions between states. They specify the infor-
mation that is added or removed from the state from which they
originate. To assist in visualisation, action effects can be viewed
in a tool-tip (Figure 4).

4.1 | Nominal Options

The graph is designed to represent different stages: the session in-
troduction (connected states in the upper part of the figure), play-
time (disconnected graphs in the middle), and the farewell (lower
part of the figure). It illustrates the ‘nominal behaviour,” which
includes the desired set of actions and states for the AP system.
During the playtime stage, various alternatives can be pursued by
both the child and the robot, such as picking up or unstacking a
block. However, it is uncertain which block will be moved first,
as this depends on their initial locations and the child's decisions.
This uncertainty is why the playtime stage is modelled using dis-
connected graphs. Then, this use case would be valid for a prob-
lem involving a tower of blocks ABC, with the goal of placing all
the blocks on the table, leading the planner to apply the actions
unstack and put down. It could also apply to a scenario where the
goal is to rearrange the blocks to form the tower CBA, where the
planner will also include the actions stack and pick up.

Then, this nominal behaviour is depicted as a directed graph
composed by partial states and actions, (P, .A), in such a way
that applying a € A in ps € P, results in ps’. It can be formalised
using the concept of options (Sutton et al. 1999):

Definition 1. An option is a tuple o= (.7, x,, ) where
J C P, is an initiation set, z, a partial policy and g the termina-
tion condition.

An option is considered applicable in a state ps, only if ps, € .7.
Once the option is chosen, the next action a, € 7, is selected, re-
sulting in a transition to state ps,,,. If the action a,,; € #, is not
applicable in such state, it reaches the termination condition,
allowing for the selection of any other option. Options can be
partially executed and resumed from any point, so if there is a de-
sire to return to an option, it does not have to be started from the
beginning. This assumes that all states where an option might
continue are also states where the option can be initiated (Sutton
et al. 1999).

Options are graphically specified by depicting the causal links
between actions a; —p>an, in which p is both an effect of a; and
a precondition of a,, establishing an order constraint a; < a,,.
However, neither transitions between options nor termination
conditions are explicitly stated, and order restrictions are only
used to easily depict and understand the current use case, they
are not forced during the planning process. Users only need to
outline them as a reasonable framework for the use case tasks,
even if they are incomplete. The problem solver will search for
the correct order of options to achieve the goal, filling in the gaps
with other options.

4.2 | Handling Uncertainty: Recovery Options
and Checkpoints

Nominal options model the desired behaviour of the system,
but exogenous events may occur and interrupt it. Therefore,
it is essential to model recovery options: actions capable of
handling the current situation and restoring the normal flow
of the use case. An example of this is searching for the child
when they are no longer present. Without such recovery op-
tions, the system may become stuck with no means of restor-
ing itself.

Recovery options are modelled separately in DEVPLAN using
minor graphs, which can be added or switched in the upper tabs.
These graphs indicate the actions needed to resolve unexpected
situations. They are not only used to model unexpected events
but also to address stochastic actions. In cases where an action
has multiple possible outcomes, one of them is included in the
nominal behaviour, while the others are modelled as exogenous
events. For example, if all the robot's actions have the probabilis-
tic outcome of a low battery level, this outcome would be man-
aged with a recovery option, as the battery level could become
low in almost any situation.

As discussed in Section 2.3, it may not always be desirable
to replan from the current state, but rather to resume the ex-
ecution from an earlier point. If partial states are subsets of
lifted atoms, users can define a subset of these partial states as
checkpoints within the nominal behaviour. These checkpoints
serve as states from which the execution can be recovered
after a failure. Recovery will occur from the last partial state
visited. For instance, in the use case depicted in Figure 5, a
corrective option is available for situations where the child is
lost. In this scenario, the states time to play and stop play are
marked as checkpoints. Thus, if the child leaves the room, the
system can either restart the game or summarise to conclude
the session, depending on the stage at which the interruption
occurred. It is important to note that we refer to exogenous
events as those that are not part of the nominal behaviour
but are, to some extent, anticipated. If a failure is truly unex-
pected, it will not be modelled, and the system will be unable
to recover from it.

Then, we propose DEVPLAN as a means to describe Automated
Planning (AP) use cases using options, recovery options and
checkpoints. The framework displays this information in real
time within the visual interface and also allows users to define
problems associated with the represented domain, specifying
the initial state (grounded atoms) of the world and the goals to be
achieved. Although DEVPLAN is primarily developed for model-
ling social robotics use cases, its versatility allows it to be applied
to a wide range of Automated Planning (AP) applications. It is
inherently designed to handle increasing complexity through
the use of partial state definitions and modular task modelling,
enabling the system to scale effectively as the number of inter-
actions expands. Even multi-robot systems can be represented
in DEVPLAN by modelling different robots as objects, with the
control architecture responsible for sending information to the
appropriate robot. An example of this approach can be found in
(Gonzalez et al. 2020).
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5 | AP Compilation

DEVPLAN simplifies the process of gathering the requirements
for the Automated Planning (AP) system. However, after this
stage, the code development remains a tedious and complex
task, especially when dealing with challenges related to defin-
ing deterministic actions to model stochastic domains while
achieving natural interaction. These challenges have hindered
the adoption of AP as a paradigm in this field. In this section, we
present a translation process from the graphical model created
in the editor to a high-level declarative language. The model is
initially saved in an XML format, capturing all the informa-
tion about states, actions, as well as initial and goal states. We
chose the XML format because it allows flexibility for various
compilations into the desired target language based on specific
requirements. For this work, we consider a translation into the
standard PDDL 2.1 formalisation (Fox and Long 2003). Below,
we present the implemented algorithms for converting the
model, structured around options, recovery options, and check-
points, into PDDL.

5.1 | Nominal Options

Options of the nominal behaviour are described by means
of sequential connections of states and loops, translated by
DEVPLAN as follows.

5.1.1 | Sequential Connections

States in sequential connections contain facts that the envi-
ronment must hold to execute the action, essentially defining
the action's precondition. Effects are derived from the action
definition (as shown in Figure 4) and parameters are obtained
from the lifted variables included in preconditions and effects.
The nominal behaviour is executed as long as no information
compromising the expected state is received. Therefore, every
predicate related to an unexpected event is included as a ne-
gated precondition of each nominal action. This ensures that
these actions will not be executed in case of interruption. The
code in Figure 6 represents the translation of the action depicted
in Figure 4, where the (not (missing-child ?c)) condition comes

(:action start-game
:parameters(?c-child ?7l-location ?g-game)
:precondition (and (greeted-child 7c)
(training-area 71)
(robot-at 71) (child-at 71)
(current-game ?7g)
(robot-idle)
(not (missing-child ?c)))
:effect (and (not (robot-idle))
(robot-training)
(started-game ?7g)
(playing))
)

FIGURE 6 | Start-game action PDDL formalisation.

from the unexpected event (missing-child ?c). If the (missing-
child ?c) fact were present, it would be addressed by the search-
child action.

5.1.2 | Loops
DeVPlan allows modeling loop actions in two different ways.

« In for-like loops, an option includes the repetition of a se-
quence of actions a specified number of times. These loops
are defined using two actions leaving from the same partial
state ps € P,. One of the actions (a;,) enables to keep inside
the loop, while the other one (a,,,) incorporates an exit con-
dition to leave the loop when reached. The exit condition in-
volves a counter, which is incremented or decreased during
the cycles until it reaches the exit condition.

« In while-like loops, a set of options is repeated as long as
a condition remains true. For example, the start-game ac-
tion in Figure 6 introduces the fact playing, and the action
sum-up (depicted in Figure 5) removes it. Consequently,
actions related to the game, such as picking up a block or
stacking it, can only be executed while this fact is present.

The procedure for generating nominal flow actions is shown in
Algorithm 1, which receives all the model information as input.
To begin, the function getExogenousFacts receives the set of re-
covery options and collects all the exogenous facts that can occur
in the use case (e.g., the (missing-child ?c) atom). The main for
loop (spanning lines 1 to 14) iterates through each action, con-
sidering the previous state (getPreviousState). The method is-
EndOfLoop detects whether the current action marks the end of
a for-like loop. If it does, the precondition state includes both the
numerical condition to exit the loop and to stay in. The method
clearExitConditions maintains only the exit condition in the pre-
condition, removing the other possibility. If the action is not part

ALGORITHM1 | translateNominalAction.

Input: A: the set of actions P: the set of partial states %
the set of recovery options

Output: A" a set of PDDL actions

1A <«

2:E <« getExogenousFacts (%)

3:fora; € Ado

4: s; < getPreviousState (P, a;)

5: ay, <« isEndOfLoop (a;)

6: ifa,, then

7: pre(a]) « s;\ clearExitCondition (s))
8: else

9: pre(a)) < s

10:  endif

11:  pre(a]) < pre(a)) U {-p@®)| p(t) € E}

1 eff(a}) « eff(a;)

13: par(a)) < u{{t}|p(t) € pre(a}) Ueff(al) }
14 A <Aud

15: end for

16: return A’

»
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of aloop, all predicates from the state are added as preconditions
(line 8). In both cases, exogenous predicates collected from the
recovery options are added as negated preconditions (line 10)
since nominal flow actions cannot be executed in the presence
of external events. The effects are derived from the action defi-
nition, and the parameters are obtained from the objects present
in both the preconditions and the effects.

The initial and goal state are defined in DEVPLAN by instan-
tiating atoms with defined objects, so the translation to PDDL
formalisation is direct.

5.2 | Recovery Options and Checkpoints

Recovery options for managing exogenous events are generated
similarly to the nominal flow options. However, their effects
also include the artificial proposition (backwards action) to
control the activation of checkpoint recovery. Figure 7 displays
the resulting PDDL for the recovery option that accounts for the
possibility of the child leaving at any time.

Checkpoint recovery is managed by what we refer to as backward
actions (Figure 8). The compiler automatically generates one of
these actions for each checkpoint defined, removing all interme-
diate effects added between two different checkpoints. This ac-
tion forces the restart of the nominal flow from the desired point.
Otherwise, the current state would still include all these facts,
going back to the exit point when the exogenous event happened.
However, it is important to note that predicates marked as per-
sistent or sensed will not be removed; we cannot “restore” infor-
mation that should be sensed from the environment.

Under normal circumstances, the standard high-level response
to an exogenous event during nominal behaviour would in-
volve halting the execution, applying the corrective action(s) (as

(:action search-child
:parameters (7c - child)
:precondition (missing-child 7?c)
reffect (and (detected_child ?c)
(not (missing-child 7c))
(backwards-action))
)

FIGURE7 | Recovery action.

(:action restore-from-checkpoint
:parameters (7g - game)
:precondition (and (backwards_action)
(= (checkpoint) 1))
(and (not (started-game 7e))
(not (backwards_action)))

:effect

)

FIGURE 8 | PDDL formalisation for backwards action.

ALGORITHM 2 | createBackwardsAction.

Input: A: the set of actions Pg: the set of partial states

Output: B: the set of PDDL backwards actions
1l:k <0
2:b, < 0
3:fora; e Ado
4: s; < getPreviousState (P, a;)
5: checkpoint « isCheckpoint (s,).
6: for p(t)in s;do
7: if p(t) # sensed & p(t) # permanent

then
8: eff(by) < eff(b,) U =p(t)
9: end if
10:  end for
11:  if checkpoint then
12: pre§bk; « currentCheckpoint(k)
13: par(by) < u{{t}|p(t) € eff(b;) }
14: B<BuUb,
15: k<k+1
16: b« @
17:  endif
18: end for

19: return B

shown in Figure 7) to resolve the situation, and incorporating
the appropriate backward action (Figure 8) to eliminate all in-
termediate effects, thus restoring the nominal behaviour from
the last visited checkpoint. Backward actions are included only
if checkpoints are defined; otherwise, the nominal behaviour
will be restored from the current state.

The process of generating backward actions is outlined in
Algorithm 2, which takes the set of actions and states involved
in the model as input. Initially, it creates an empty template
for a backward action (line 2). Subsequently, it iterates over the
actions, saving all the negated effects of the actions, excluding
those that are sensed or permanent. When a checkpoint state is
found, the backward action is increased with the collected infor-
mation. The currentCheckpoint method (line 12) introduces the
current checkpoint number and the flag (backwards action) as
preconditions of the action, ensuring that the operator is only ac-
tivated when necessary. Line 14 marks the completion of the cur-
rent backward action, and a new template is created in line 16,
which will be filled if more checkpoints are identified. Finally,
the set B of backward actions is returned.

6 | Integration in the Robotic Platform

This section provides detailed insights into the no-code deploy-
ment process after the PDDL formal models are generated by
DEVPLAN, including their integration into a real robotic plat-
form. We will begin by explaining the deliberative architecture
in which the model is integrated, responsible for controlling
and monitoring the robot's progress. Then, we will explain the
connections between the layers of this architecture, where high-
level instructions are translated into the low-level commands
interpreted by the robot.
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FIGURE9 | CLARC robot displayed at the retirement home.

6.1 | Embedding in an AP Control Architecture

The current work uses MLARAS, a planning and replanning
architecture. It was implemented on a social robot developed
for geriatric assessment in the context of the CLARC project
(Martinez et al. 2018) (Figure 9). This robot integrates the
RoBOCOMP framework (Manso et al. 2010), a component-
oriented architecture whose main aim is to ease the develop-
ment of robotic frameworks. This middleware automates the
communication among different components through TCP/
IP using Ice (Internet Communication Engine) interfaces.
Moreover, the CLARC robot incorporates the CORTEX cogni-
tive architecture to control its behaviour. In the CORTEX ar-
chitecture (Bustos et al. 2019), a set of software components
communicate with each other through a shared common
world view, where all the information the robot has about its
context —internal and external -is included. This world repre-
sentation is coded as an oriented graph structure named Deep
State Representation (DSR) (Bustos et al. 2015), that stores
symbolic and geometric information. That DSR, the com-
ponents in charge of different tasks, and the agents that link
these components to the DSR, conform the CORTEX cognitive
architecture.

The planning architecture MLARAS is integrated as a component
of this framework, together with its agent, that reads and modifies
the DSR. The agent will receive the low-level actions of MLARAS
and write them into the DSR, so that the other components of
the robot will read the information and react accordingly, exe-
cuting the instructions. In the same way, the agent will read the
low-level information written in the DSR and communicate it to
MLARAS by means of the low-level variables. Hence, to integrate
MLARAS in CORTEX, the main task is to define the interfaces
between MLARAS and its agent (from MLARAS to the agent and
vice-versa).

The full architecture of MLARAS implemented in the CLARC
robot is shown in Figure 10. A high-level layer is used to de-
fine the use case by means of the graphical user interface as
proposed in this paper. From the interface, the PDDL domain
and problem definition are obtained, as well as the translation
from high to low level and vice-versa. This output is received

GUI DECISION
SUPPORT
User PDDL | highToLow A
Domain/ | lowToHigh Statey m
Problem A 4
Statey
(—7 MONITORING
Y |7.‘.
State| EXECUTION
L Lt
Low-High High-Low
ahatey commands
State commands
Agent

FIGURE 10 | Architecture of the deliberative module of the CLARC
robot.

by the medium layer, which is the deliberation layer of the
architecture. The Execution component centralises all opera-
tions, translating between high and low levels. The Execution
component communicates directly with the ROBOCOMP agent,
getting access to the world view of the DSR, as discussed.

6.2 | From High to Low Level and Vice-Versa

When using deliberative architectures such as the afore-
mentioned, knowledge is generally divided into two levels of
abstraction. The external information that comes from the
sensors of the robot is low-level and should be translated into
a higher level of abstraction so that the planner system in-
tegrated in the architecture can reason with it. In our case,
the low-level information would be translated into high-level
PDDL predicates, which represent the state of the system. In
the other direction, high-level actions defined with PDDL
should be translated into the low-level instructions that a
robot can immediately execute, which are considered low-level
actions. For example, in a robot with speakers and a screen,
the high-level action say could be decomposed into playing a
sound and then saying the actual speech while showing subti-
tles on the screen.

These translations are generally hard-coded directly into the ar-
chitecture by technical experts, which makes them difficult to
change. To alleviate this problem, a declarative language was
proposed in (Gonzalez et al. 2018). That eases the translation,
but it is still necessary to understand the Extended Backus—-Naur
Form (EBNF) description of the grammar for both translations.
For instance, a high level action such as say can be converted
into different low level commands, like play a sound, show sub-
titles on a screen, and say que speech:
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High: SAY (speech)

Lows: play sound()
show subtitles (?speech)
say (?speech)

On the other side, when an event is received by the robot, for
example, a scheduled call has been cancelled, that information
has to be added to the current state as a PDDL predicate, to rea-
son about it:

If: Scall cancelled is true
add(call cancelled Spatient, state pddl)

To make the translation from high to low level and vice-versa
even easier, it has been integrated in DEVPLAN, so that when
the high-level behaviour of the use case is specified with se-
quences of actions, the translation of these actions can be de-
fined too. In the same way, the values of the low-level variables
that come from the sensors of the robot will be translated into
high-level predicates. These translations are done by means of if/
then statements; depending on the value of a low-level variable,
predicates can be added or deleted from the state of the problem.
The interface takes such conditions input by the user and con-
verts them into the high-to-low and low-to-high translation files
as described in (Gonzalez et al. 2018). This way, the output of
the interface can be directly integrated into the architecture of
the robot, as detailed in the next section. Different catalogues de-
scribing what the robot can do are also provided by its designers
as input. These catalogues are in comma separated values (csv)
format and, while some of them are common to all robots, others
are particular for certain platforms. The currently developed cat-
alogues are divided in:

» LowActions: Includes all the low-level instructions that the
robot can execute. Each line includes the name of the action
and the required parameters separated by commas. Users
can choose among these actions to detail the decomposition
of the high-level operators.

+ Variables: Includes the low level variables that the robot
perceives from its sensors. Users have to specify what would
happen depending on the values of these variables as a se-
ries of conditions. It could be to add a PDDL predicate to
the current state, to delete it, or to change the value of the
numerical predicates of the state. Those variables are iden-
tified by an initial $ symbol.

« Speech: Optional catalogue to specify the possible utter-
ances that the robot can say when speaking. For each line,
the id of the speech, its type, and the actual text are spec-
ified. This catalogue is only necessary if the robot has the
ability to speak and a low-level action to do so, where one of
the parameters is the type of speech to say.

« Animations: Optional catalogue to define the animations
implemented in the robot. They will be used as parameters
of a low-level action to execute the animations.

These catalogues will be associated with a type of robot, so that
when users design a use case with the interface they will be able
to choose among several available robots. This project currently
has catalogues for low actions, variables, and speech.

7 | Evaluation

DEVPLAN has undergone different evaluations to demonstrate
each of the contributions explained so far, testing their function-
ality under typical usage and execution. The evaluations are di-
vided into two main parts:

« Evaluation of the graphical user interface: This involved
testing the usability of the graphical user interface with a
group of inexperienced users. The objective was to assess
the differences between hand-coding planning tasks and
using the proposed method.

« Evaluation of the integration in a real robotic platform: This
phase included injecting two use cases and the translation
files required to set up the deliberative architecture into the
CLARC robot as generated by the framework.

Subsections below detail the evaluations carried out and their
main conclusions.

7.1 | Evaluation of DeVPlan

The usability of the presented framework has been tested with
real users. The experimental results reported in this section pur-
sue two main objectives: (1) to evaluate the usability of DEVPLAN
in comparison to manually handwriting PDDL descriptions and
(2) to assess whether the workflow representation is intuitive to
depict Social Robotics use cases, making its development feasible
even for non-expert PDDL programmers. We recruited a total of
54 fourth-year computer engineering students, working in pairs.
While they possess advanced knowledge of programming, they
had no prior experience with Automated Planning (AP) or PDDL.
As part of a 6 ECTS! Knowledge Engineering course, they re-
ceived 10h of training in AP and were instructed to use DEVPLAN
to create different domains and problems. Using DEVPLAN, do-
main experts from retirement homes actively collaborate with
knowledge engineers during the modelling process, but it is the
latter who take the lead in creating the use case models, particu-
larly when starting from scratch, while retirement home special-
ists contribute domain expertise to ensure the models align with
real-world scenarios. This collaborative approach allows special-
ists to make changes to the model, such as modifying problem
objectives or adding preconditions to actions, without needing to
understand the syntax of PDDL. This design lowers the barrier
to participation and empowers domain experts to adapt models
to evolving requirements independently. For the evaluation pre-
sented in this paper, the models were created from scratch, re-
quiring expertise in knowledge engineering. For this process, we
used students from a knowledge engineering course to simulate
the role of knowledge engineers.

7.1.1 | Protocol

To adapt the experiments to time and resource constraints, we
provided the participants with two simple problems to model,
referred to as problem A and problem B. We divided partici-
pants into two groups. Group 1 (15 pairs) solved problem A di-
rectly in PDDL and problem B in the graphical interface, while
Group 2 (12 pairs) did the reverse. This approach ensured that
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all participants experienced both conditions, enabling a more
meaningful analysis of the responses to the questionnaires. We
presented them with the following problem definitions:

Problem A. There is a robotic arm in a factory with the task
of picking up heavy boxes from a table and placing them onto a
conveyor belt. Currently, the arm is teleoperated, but the goal is
to automate its behaviour. Whenever the arm is free, it should
pick up one of the boxes from the table, holding the box securely.
After that, it will rotate to position the box on the conveyor belt.
This process continues until all the boxes on the table are placed
on the belt.

Problem B. A restaurant wants to introduce a new waiter
robot to help in customer service. Initially, the robot is at the
bar and is responsible for taking note of each customer's order,
which can be either coffee or tea. Coffee orders are prepared in
the coffee maker, located at the buffet area, while tea orders are
made using the kettle in the kitchen. Once the robot is at the
respective preparation area, it should make the coffee or tea and
return to the bar to serve it to the corresponding customer.

The experimental procedure is divided in five stages, shown
in Figure 11. Before starting the process, participants received
an introductory session on AP theoretical concepts. In the next
stage, Group 1 was tasked with encoding problem A in PDDL,
while Group 2 did the same but in DEVPLAN. Following this,
Group 1 switched to DEVPLAN to implement Problem B, while
Group 2 coded Problem B in PDDL. Between these two phases,
participants were asked to complete questionnaires about their
experiences in developing the use cases (with one response sub-
mitted per pair within the group).

All tests followed the System Usability Scale (Brooke et al. 1996),
where the questions were rated by the participants on a Likert
scale ranging from 1 (strongly disagree) to 5 (strongly agree).
Table 1 shows the questionnaire for both groups after each im-
plementation, with the aim of identifying differences between
developing Social Robotics use cases in DEVPLAN or hand-
coding them in PDDL. The questionnaire shown in Table 2 was
used to assess the usability of the proposed framework. Our eval-
uation focuses on a qualitative analysis rather than presenting
quantitative data such as time savings or costs. This approach
was chosen because our primary aim is to assess the usability
and conceptual effectiveness of DEVPLAN in enabling domain
experts and knowledge engineers to design robotic use cases.
Quantitative metrics, while valuable, would require additional

Introduction to A
Automated Planning Basic concepts of AP

Group 1 Group 2
Prob. A in PDDL Prob. A in DeVPlan

Group 1 and Group 2 models
Problem A using PDDL and DeVPlan

User questionnaires Evaluation of Problem A

Group 1 and Group 2 models
Problem A using DeVPlan and PDDL

Prob. B in DeVPlan Prob. B in PDDL

User questionnaires

Evaluation of Problem B

FIGURE11 | Experimental protocol.

TABLE1 | Questionnaire to measure the gap between both groups.

ID Question

Q1 I think the Social Robotics use
case was easy to implement

Q2 It took a long time for me to implement
the Social Robotics use case

Q3 I felt very confident implementing
the Social Robotics use case

Q4 It took several tries for me to develop
the Social Robotics use case

Q5 I could formalise the Social Robotics
use case without PDDL knowledge

TABLE 2 | Questionnaire to measure the framework'’s usability.

ID Question

Q1 I would like to use this interface frequently
Q2 I found the interface unnecessarily complex
Q3 I thought the interface was easy to use
Q4 TIwould need the support of a technical

person to use this interface

Q5 I found the various functions in this
interface were well integrated

Q6 I thought there was too much
inconsistency in this interface

Q7 I imagine that most people would learn
to use this interface very quickly

Q8 I found the interface very cumbersome to use
Q9 I felt very confident using the interface
Q10 I needed to learn a lot of things

before I could use this interface

studies under controlled experimental conditions, which were
beyond the scope of this initial evaluation.

7.1.2 | Results

Figure 12 shows the results of the questionnaires given to
the participants after the implementation of the use cases.
Problem A was the first approach to use case modelling, re-
porting significant differences between Group 1, who hand-
coded it, and Group 2, who used DEVPLAN, especially in terms
of effort, confidence, and knowledge. It is also worth noting
that Group 1, who started implementing problem A in PDDL,
had a better experience implementing problem B in the inter-
face the next day than the people who directly started using the
interface, who took more time in the implementation. Since the
framework is based on AP, it would be interesting to consider
such results to pre-train final users in the basic notions of the
language.
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the implementation carried out in Groups 1 and 2, answering the questions in Table 1. Figure 12e depicts the results of the assessment of DEVPLAN,
in which both Group 1 and Group 2 participated together to answer questions shown in Table 2.

Nevertheless, during the first use of the given system, most par-
ticipants found that DEVPLAN was simple and effortless to use,
despite the unfamiliarity. It means that people who are used to
programming have found the tool useful and comfortable, even
in a similar way as if they were actually programming, but with-
out the disadvantage of having to learn a new programming
language.

We believe these are promising results for future evaluations
with final users. Since fewer of them are expected to be skilled
at programming, we can assume larger differences between the
two approaches, especially expecting that most of them will not
solve the problem by hand coding it.

7.2 | Field Trials Using CLARC Robot

The last objective of this work is to verify if the generated models
are indeed functional once injected into the control architecture.
This section summarises the deployment of two real use cases
in a retirement home, using DEVPLAN to design the models and
integrate them into a cognitive architecture.

We carried out such tests in the context of an EU DIH-Hero
project and a national research project related to evaluate the
acceptability and utility of a socially assistive robot working in
a retirement home. The use cases performed by the robot were
designed following a co-creative process involving all end users,
which highlighted the importance of optimising the time of
healthcare professionals on their daily tasks in a retirement home.
Activities such as informing patients about the meals of the day or
providing residents with the opportunity to talk to their relatives
require staff members to incorporate these tasks into their daily
schedules, which are often rigid and difficult to reconcile. The res-
idence has already deployed a CLARC robot (Figure 9), previously
used in Comprehensive Geriatric Assessment procedures (Voilmy
et al. 2017). In such scenarios, two use cases were initially pro-
posed to be teleoperated or implemented through state machines.
The first option was discarded because it still required a person
to control the robot manually. State machines seemed to be a bet-
ter option, but they are tough to implement and update, being
also difficult to understand by general users, requiring expertise
in programming. By contrast, our no-code proposal based on AP
provides an easier and more flexible implementation.

The system was fully tested on the CLARC robot according
to the integration procedure explained in Section 6, exposing

FIGURE13 |
the retirement home.

CLARC robot during the announcer use case testing at

the generated plans to execution in a real environment. It
took less than a week to perform the high-level design, im-
plementation, and testing of the two use cases at the Vitalia
Teatinos Residence in Mdlaga, Spain. The generated files
from DEVPLAN were injected into the control architecture,
where high-level planning is performed via the Metric-FF
(Hoffmann 2003) PDDL2.1 compliant planner. During the use
cases, the robot interacted with 5 people with no experience
in activities with robots, in addition to residents located in the
corridors and halls. In all executions, the robot was totally
autonomous, including navigation. Although initially some
executions failed and required a manual restart of the plat-
form, by the third day all interactions were correctly executed
as described below.

Announcer. It was the simplest use case and the first one
implemented. The residence has a pre-established monthly
lunch and dinner menu with different options depending on
the required diet. The proposal is to have a robot in charge
of announcing the menu when lunchtime or dinnertime ap-
proaches. It is waiting in the charging base until it is time to
announce the menu. Then, the robot goes to the main room
and plays a sound to notify its arrival (Figure 13). The menu
is stated by the robot twice. After that, it goes back to the
charging base. Its design contains two main points where the
robot can be: the charging base and the hall where the menu
has to be announced. Given the generated domain and prob-
lem, the planner returns as solution the grounded sequence
of actions:
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(MOVE CHARGING BASE HALL ANNOUNCE)
(PLAY SOUND HALL ANNOUNCE)
(SAY MENU HALL ANNOUNCE)

(MOVE HALL ANNOUNCE CHARGING BASE)

w N PO

They represent the high level actions taken by the robot, which
are sent in commands to the robotic platform. Such decomposi-
tion is detailed in Figure 14. It represents a good example of how
the same high level action may implement different behaviours
in its corresponding low level, depending on the current situa-
tion. In this case, the movement has a particularity if the point
(represented as p2) to which it is directed is the charging base,
where the robot will also introduce a speech called “rest”, which
signals the end of the use case and indicates that the robot is
going to charge.

Videocall. In this use case, the robot first announces the in-
coming video call in a set of locations, then goes to a specific lo-
cation and waits for the resident to approach, starting the video
call when a person is detected in front of the robot (Figure 15).
For this demonstration, we firstly establish various halls where
the robot can announce the upcoming video call. Residents of
the retirement home spend the day at different places accord-
ing to their level of dependency. This information is an input to

High:
Lows:

move (pl, p2)
print ("MOVE TO " + $p2)
move ($p2)

High: move(pl, p2), $p2 is charging_base
Lows: print("MOVE TO " + $p2)
say("rest")
move ($p2)
High: say_menu(point)
Lows: print("SAY_MENU " + $point)
say ("menu")
High: play_sound(point)
Lows: print("PLAY_SOUND")

playSound ()

FIGURE 14 | High to low level decomposition for the announcer use
case.

FIGURE 15 | CLARC robot during a videocall test, where the tablet
shows the image of the family member on call.

(MOVE CHARGING_BASE HALL_ANNQUNCE)
(CALL_PATIENT HALL_ANQUNCE PATIENTO1)
(MOVE HALL_ANQUNCE HALL_CALL)
(DETECT_PATIENT PATIENTO1 HALL_CALL)
(IDENTIFY_PATIENT PATIENTO1)
(START_VIDEOCALL PATIENTO1)
(FINISH_VIDEQOCALL PATIENTO1)

(SAY_BYE PATIENTO1)

(MOVE HALL_CALL CHARGING_BASE)

FIGURE 16 | Resulting plan for the videocall use case.

O~NOUPdWNHFO

build the initial state, so when the robot receives a petition to
perform a video call, it already knows where to go to announce
it. The other location previously established is the hall where the
call will be held, which is determined by the retirement home.
The initial plan generated is shown in Figure 16, where the call
is assumed to be executed normally.

But in this use case, it was also tested an example of a change in
the expected state of the world: if the call gets cancelled, the robot
receives the current new state and replans accordingly, stopping
the use case and returning to the charging base. Figure 17 shows
the use case as implemented in DEVPLAN.

Although from an AP point of view, the generated plans are
simple (low number of actions), for more complex scenarios our
approach would also provide shorter deployment times com-
pared to other techniques. In just 1week, we were able to de-
sign two prototypes, integrate the control architecture on the
robotic platform, and test both use cases in a real environment.
With all components working and MLARAS integrated into the
robotic platform, this time can be reduced for future develop-
ments, as only the PDDL domain and problem definition need
to be changed.

In summary, the use of deterministic planners addresses issues
that may arise from execution in stochastic environments. This is
achieved through a replanning process that utilises recovery op-
tions and checkpoints. The speed of modern deterministic plan-
ners enables efficient real-world executions, as demonstrated by
successful real-time operations in the retirement home.

8 | Discussion

Our work in the field of Social Robotics domain modelling aims
to simplify the development process by defining the tasks that
the robot can perform as options. These options can be com-
bined to create complex behaviours that fulfil the objectives of
the use case. In comparison to other modelling approaches, such
as Finite State Machines, DEVPLAN generates models that are
not only easier to create but also easier to comprehend.

A use case similar to the video call was developed for a hospital
where, due to COVID restrictions, the robot also needs to be dis-
infected after each call. This use case was implemented through
the state machine shown in Figure 18. This method requires
specifying all system transitions, making it difficult to model
and lacking the ability to generalise. In fact, the video call system
was previously implemented for this purpose. However, creating
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At_point move

At_hall

New_location call_patient -
~blocked ~current _location(p) current_location(p) —— ;. Called
~videocall_process current_location(p2) current_patient(pat)
current_location(p) - hall(p, pat) called(pat, p)

videocall_ended(pat)

. Identified
= identify_panent
current_patient(pat)
Detected_patient /f—b el bt
current_patient(pat) identif_patient(pat)

current_location(p)
detected_patient(pat)

&
)
&
;
&G'
& .
detected_patient(pat)
videocall_process

|
Videocall_room™

current_patient(pat) Current_patient
current_location(p)
videocallroom(p) current_patient(pat)
farewell(pat)

next_patient(pat, pat2)

FIGURE 17 | Videocall use case modelled in the graphical interface.

waiting_call / move

start_videocall Videocall on

finished /disinfect

current_patient(pat)
identif_patient(pat)
videocall_on(pat)

inge
Ish_ videoC it

Videocall_ended

current_patient(pat)
identif_patient(pat)
videocall_ended(pat)

&
%

~ g,
\1’@

Farewell

farewell(pat)

change_patient =
—— 5 New_patient

current_patient(pat2)

-1 cancel_videocall
Call_cancelled
call_cancelled(pat)

videocall_ended(pat)
farewell(pat)

finished
NURSERY DISINFEECTION finish /
say
previous_state
= NURSERY
cancel / cancel /
finished / stop
finished disinfect previous_state I say
is_docked = NURSERY
finished CANCELLED
/ move

LEAVING
CANCELLED
/ move
finished say
/ move

OUT_DOOR finished /
move
say

finish_talking /
move
sey VIDEOCALL

ESN e

|

/ stop
/ stop finished

finished /
search_patient

is_with /

SEARCHING
call

FIGURE 18 | Graphical representation of the Finite State Machine for the hospital videocall use case. All possible transitions must be specified.

a new state machine to adapt the use case to the requirements
of the retirement home (e.g., no disinfection, announcement of
the upcoming video call, etc.) was challenging due to the com-
plexity of its development. By contrast, in Figure 19 we present
a problem modelling approach that closely resembles an intui-
tive representation of the main tasks of the use case. Here, the

options are clearly specified, including navigation, requesting
disinfection, managing a cancelled call, and the general video
call process. This representation is also comprehensive enough
to be valid for multiple calls with different patients and to de-
tect blocking objects at any time (modelled as exogenous events).
To illustrate the capabilities of this approach, and in contrast
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ask-for-disinfection

at point infected disinfected
move .
detect-patient Start-videoca||
: S . detepted m——— %,
&  inroom patient videocall ’4'4\1/_
o %
R 0
N £
videocall
at nursery ended
o
&
change-patient ¢°
SN
current  ———»  next out of K\Q@
patient patient room
ask-for-help cancel-call
robot — ™ e call B » process
blocked HOMDIGCKE cancelled finished

FIGURE 19 | Graphical representation for the hospital videocall us-
ing DevPlan. Unexpected events are handled by the control architecture
using AP.

to the state machine implementation, the model generated in
DEVPLAN was effortlessly translated to the use case needed at
the retirement home, as shown in Figure 17.

9 | Related Work

In this work we propose a link between the graphical workflows
and the PDDL formalism through the definition of options. Such
concept is borrowed from (Sutton et al. 1999) and is based on
macro-operators (Korf 1985): sets of actions that are usually ap-
plied sequentially in a plan. In contrast to them, which specify
a sequence of actions that has to be executed as a whole, options
can be partially executed and resumed from any point. In addi-
tion, macro-operators focus on the actions applied, abstracting
out the partial states traversed, while in our approach both ac-
tions and states are equally important and must be specified by
the user. Options have some similarities with timelines (Jénsson
et al. 2000) and partial plans (Minton et al. 1994; Weld 1994).
A timeline is a temporal description of the different values a
state variable takes. In timeline-based planning the use case
is modelled in terms of a series of state variables and temporal
constrains among their values. For example, variable A can only
take value a;, after variable B has taken value b;. Initial state and
goals are expressed as current and future values of some of the
variables, respectively. The planner has then to fill the gaps in
the timelines to reach the desired values. In a similar way, our
planner has to fill the gaps in the options interleaving other op-
tions. The main difference is that there is no concept of action
in timeline-based planning, while in our approach actions are
a crucial element. Options can also be seen as totally ordered
partial plans, as actions in each option must appear in the plan
one after the other, and there can be some other actions in be-
tween. But partial plans do not make any assumption about the
states the plan traverses, while options imply to reach the states
included in them. Behaviour Trees are also employed in litera-
ture as an alternative to FSM. However, they primarily lead to
very reactive behaviours, which is why they are often combined
with planning approaches (Neufeld et al. 2018; Colledanchise

et al. 2019). These planning approaches fulfil the primary re-
quirement of our work, which is strategic planning. In our sce-
nario, reactive components are necessary when a plan fails and
are managed through a replanning process that adapts to the
plan to the new situation.

Related to the knowledge engineering process behind the devel-
opment of AP models for Social Robotics systems, various tools
have been introduced to support the implementation of such
planning domains. In addition to PDDL editors?, which require
deep knowledge about the specification language, we can find in
the literature systems characterised by automatically translating
the resulting visual model into its PDDL formalisation (Vaquero
et al. 2013; Simpson et al. 2007; Hatzi et al. 2010). Although all of
these systems use different graphical representations to specify
planning domains, they focus on users with a deep knowledge
of software engineering and become unmanageable for large do-
mains. Instead, the design and implementation of robotic plat-
forms are usually covered by specific toolkits (Pot et al. 2009;
Touretzky and Tira-Thompson 2011; Kim and Jeon 2007;
Jackson 2007). Some of them provide visual programming utili-
ties for novice users, but they are restricted to hardware config-
urations or basic programming, not being able to build general
models. So a major missing feature in current robotic develop-
ment tools is the possibility to have both visual programming and
general model generators, in addition to mechanisms to prop-
erly manage the human-robot interaction. These are some of the
highlighted features of the interface we propose.

10 | Conclusions and Future Work

Automated Planning has been reported in the literature as
a general approach to SAR development. However, it is not
extensively used, primarily due to factors such as the bottle-
neck in model development, which often requires extensive
knowledge engineering processes. In this paper, we propose
DEVPLAN, a tool that allows non-experts to participate in the
design of complex real-world use cases by defining the possi-
ble options to be executed by the robotic platform. Users can
depict the expected behaviour of the robotic platform through
simple conducts, which can be interleaved to create more so-
phisticated and robust behaviours. This representation of op-
tions offers a simpler and more versatile approach compared
to other techniques such as FSM's, particularly in complex use
cases or situations where there is no fixed sequence of actions
to solve the use case. Additionally, DEVPLAN generates files
to set up the control architecture embedded in the robotic
platform, eliminating the need for hard-coding components
that would otherwise require modification for each unique
use case. The evaluation carried out evidences that DEVPLAN
results useful to create social robotics use cases, and that the
generated models are executable once injected into a real ro-
botic platform.

Currently, the described use cases are launched manually,
having to decide which one of them the robot must perform at
any time. We are currently working on implementing an addi-
tional layer of deliberation to automate the scheduling of use
cases throughout the day, while also identifying opportunities
for the robot to perform smaller tasks between them. As part
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of our future work, we plan to deploy the system in production,
where real-world data can offer quantitative insights into its
performance and impact. Another avenue for improvement is
integrating large language models (LLMs) into the DEVPLAN
interface, aligning with the recent trend of combining LLMs
with automated planning (Pallagani et al. 2024). Such integra-
tion could enhance the system by predicting and suggesting
model elements based on user inputs, thereby simplifying the
model creation process and significantly improving the user
experience.
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