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Abstract: The goal of this paper is to describe TIMIPlan, an application that solves the multi-
modal and uni-modal transportation problems of one of the largest Spanish transportation
companies. The first problem, related to multi-modal transportation, reflects the combination
of at least two modes of transport in a single transport chain, without change of container
for the goods. In this paper we describe a hybrid algorithm, combining Linear Programming
and Automated Planning, to tackle the multi-modal transportation problem exploiting the
benefits of both kinds of techniques. The second problem refers to a common uni-modal
transportation problem: the delivering of goods from a central depot to consumers with time
windows, and where only the road transport mode is used. This is the well-known Vehicle
Routing Transportation Problem with Time Windows (VRTPTW). In this paper we describe
an ant colony optimization approach used to solve the VRTPTW.

Keywords: Multi-modal transport, Linear programming, Automated Planning, VRTPTW, Ant
Colony Optimization

1. INTRODUCTION

Nowadays, efficient transportation methods play a key role
in transportation companies. Uni-modal transportation is
one of the most important and successful applications of
quantitative analysis to solve business problems dealing
with the physical distribution of goods (Nanry and Wes-
ley Barnes [2000]). In these problems, the purpose is to
minimize the cost of shipping goods from one location
to another using only one mode of transport, usually
the road transport. In the case of international logistics
companies, the use of multi-modal transportation, using a
combination of at least two modes of movement of goods,
such as road, rail, or sea, represents a good choice to reduce
transportation cost (Macharis and Bontekoning [2004]).

In this paper we describe an application called TIMI-
Plan we have developed to solve successfully the multi-
modal and uni-modal transportation problems of one of
the largest Spanish transportation companies. The multi-
modal problem deals with long distance transportation,
while the uni-modal problem deals with short distance
transportation. The particular multi-modal problem con-
sidered here fits into the multi-modal chain of container
transportation services described in the literature (Crainic
and Kim [2007]). This chain usually links the initial pick-
up point to the final delivery point of the container,
visiting in between different pick-up and delivery points.
Transportation is provided by several carriers. The multi-
modal planning component of TIMIPlan consists of two
phases: in phase one, for each set of goods to be picked up

and delivered, the containers and trucks with minimum
estimated cost to complete the service are selected. In
this phase, several assignment models are constructed and
solved as linear programming problems. In phase two, an
Artificial Intelligence (AI) planner is used to select the best
(least cost) plan to serve each service: from a first pick-up
point to the last delivery point over the transportation
route. The plan should fulfill a given set of constraints
(temporal and regulatory), and will include the sequence
of the transportation modes to be used (Flórez et al.
[2011]). Although some of the application areas addressed
in AI and Operations Research (OR) are very similar (e.g.,
planning, scheduling), the methods that are used to solve
these problems are substantially different.

On the other hand, the uni-modal problem described here
fits into the Vehicle Routing Transportation Problem
with Time Windows (VRTPTW), well-studied in the
literature (Bräysy and Gendreau [2005]). The VRTPTW
problem can be described as the problem of designing
least cost routes from one depot to a set of geographically
dispersed demand points. The routes must be designed
in such a way that each demand point is visited only
once by exactly one vehicle within a given time window.
Additionally, all routes start and end at the depot, and
the total demands of all points on one particular route
must not exceed the capacity of the vehicle. In this case,
we describe the Multi-Objetive Ant Colony Optimization
(MOACO) technique (López-Ibáñez and Stützle [2010])
used to solve the VRTPTW problem.



The remainder of this paper is organized as follows. Next
section gives a brief summary of the transportation prob-
lem in its uni-modal and multi-modal versions, introducing
some of the main approaches used to solve it. Section 3 de-
scribes the concrete multi-modal and uni-modal transport
problems we deal with here. Section 4 presents the TIMI-
Plan application. Section 5 includes experiments relative
to the algorithms used in the multi-modal and uni-modal
transport. Lastly, Section 6 presents the conclusions and
further research.

2. RELATED WORK

There have been already many approaches that deal
with the uni-modal transport problem (Nanry and Wes-
ley Barnes [2000]). An overview of methods that approach
the pickup and delivery problem and vehicle routing prob-
lem can be found in Desaulniers et al. [2000], Ropke
and Pisinger [2006]. Ant colony systems (ACS) have been
widely used to solve the transportation problem. An ex-
ample is the algorithm MACS-VRTPTW (Gambardella
et al. [1999]). This algorithm is organized with a hierarchy
of artificial ant colonies designed to optimize a multiple
objective function using two different colonies: the first
one minimizes the number of vehicles while the second
one minimizes the traveled distance. In Montemanni et al.
[2003], a new algorithm based on ACS is presented to
solve a new class of problems in dynamic vehicle routing,
where new requests are received as time progresses and
must be dynamically incorporated into an evolving sched-
ule. However, in contrast with these approaches, we deal
with a real world problem with several differences to the
classical VRTPTW problem. These differences are detailed
in Section 3.2.

In the multi-modal transport problem there has also been
some work done, though none of these works solves the
complete logistics problem, being centered in other prob-
lems associated with multi-modal transportation or in sub-
problems that do not represent all the constraints consid-
ered here (Macharis and Bontekoning [2004]). In Catalani
[2003], a statistical study is presented to improve the
intermodal freight transport through Italy, by using the
road-ship and road-train transports. In this study, only the
main points of origin or destination are taken into account,
so the study does not deal with the complete network
complexity problem, as we do. In Qu and Chen [2008],
the authors pose the multi-modal transport problem as
a Multicriteria Decision Making Process (MCDM). They
propose a hybrid MCDM by combining a Feed-forward
Artificial Neuronal Network with a Fuzzy Analytic Hier-
archy Process. The case study is a network in which nodes
represent terminals, and edges represent different trans-
portation modes (road, ship and train). The model can
deal with several cost functions and constraints, but they
only define six nodes, while our maps can have thousands
of nodes.

3. PROBLEM DESCRIPTIONS

We define next the two problems for which we have
generated the software tool.

3.1 Multi-Modal Transportation Problem

We define a multi-modal problem as the tuple < G,F,C,R,
B, S > where G is the network graph, F , C, R and B are

the sets of trucks, containers, trains and ships respectively
and S the services that should be fulfilled. The nodes in G
represent the locations where the goods should be picked
up or delivered. A service s ∈ S specifies pickup and
delivery operations, each one with a location and service
time, that indicates the time at which the corresponding
location is available for the pick-up or the time at which a
delivery service should be performed. To complete a service
only a container c ∈ C is required, but it can be moved
by using a combination of vehicles: trucks, trains and/or
ships. Each truck t ∈ F has information relative to the
location and time at which it will be available and its
corresponding driver’s accumulated driving time. If a truck
is used, it should travel to pick the container up, and either
visit all locations of the transportation request (pick up
and delivery locations), or transport it to the next trans-
portation means (train station or port), where the rest of
the plan might involve one or several other transportation
vehicles. Trains and ships have a timetable specifying their
movement actions and the load and unload actions can
only be executed when they are in a station/port. The
resulting plan should satisfy the given service times of the
locations. For instance, if the truck and container arrive
early, they have to wait at the location until it is available.
If the truck and container arrive late, there will be a cost
penalty.

In multi-modal transportation, several trucks are usually
needed. For example, Figure 1 shows how, in order to
complete the service, there are five available trucks, one
container, two trains and two ships. The first truck with
the container picks the shipment up from Pick–Up1 and
transports it to Pick–Up2 using either road or train. If the
train option is selected, another truck will be necessary
to transport the container to Pick–Up2. Also, there are
two other decision points related to the use of Ship1 and
Train2. The use of Ship2 and Truck4 is mandatory for
reaching the Pick–Up3 point.

Fig. 1. Example of multi-modal transportation graph.

Thus, there are several kinds of resources, each one with
different kinds of costs (e.g., moving the truck empty is
different from moving it loaded), different routes (either
single mode routes, as all road, or multi-modal routes, as
combining trucks with barge and/or rail), and with tem-
poral and resource constraints (drivers have constraints on
number of continuous driving hours, for instance). Several
constraints have not been included in the previous descrip-
tion of the problem, due to the difficulty of formalizing
them or because they depend on information that is not
available in the system. For example, there are soft goals
related to the places where the drivers prefer to stop or to
the client’s preferences about vehicles and/or containers



used to transport their goods. Also, human planners have
expert knowledge about the probabilities of new services
arising in each zone. They use that knowledge to reserve
trucks or containers in these zones or make movements
that prepare all resources for future unknown services.
Given that it is impossible to predict all potential soft
goals to be taken into account when planning, we use
a mixed-initiative approach to help the user taking into
account those constraints that cannot be easily handled
by TIMIPlan.

The planner is executed every day. A daily problem has
approximately 600 locations (summing up all pick-up and
delivery locations, as well as initial positions of trucks,
containers, ships, and trains), 175,000 edges among those
locations, 300 trucks, 300 containers, 300 services, 50 train
segments and 150 ship segments. The company imposes a
time limit of 2 hours for computing the daily plan.

3.2 Uni-Modal Transportation Problem

We define the particular uni-modal transportation prob-
lem we consider here as the tuple < G, V, S, d > where
G is the network graph, V the set of capacity-bounded
vehicles, d the depot, and S the services, composed of a
demand and a time window. The goal is to find the less
number of routes as possible, starting and ending in the
depot d. The primary objective is minimizing the number
of vehicles used to fulfill the maximum number of services
s ∈ S, within the time windows imposed for each service
and without exceeding the capacity of the vehicles. The
secondary objective function is minimizing the total cost.
The total cost is computed taking into account the cost
per kilometer of each vehicle and the distance traveled,
and the waiting cost computed for each service when a
vehicle arrives before the beginning of the time window.
Our particular uni-modal problem has several differences
with respect to the classical VRTPTW problem:

(1) In our problem, a limited number of vehicles, |V |,
is given to completely fulfill all the services s ∈ S.
The classical VRTPTW problem assumes that the
number of vehicles is unlimited, and the objective is
to obtain a solution that minimizes the number of
vehicles. In the real world problem we deal with here,
this assumption is unrealistic.

(2) Each vehicle has its own per kilometer and waiting
costs. In the classical VRTPTW problem it is as-
sumed that all the vehicles have the same cost per
kilometer, and the waiting cost is not considered.

(3) The same vehicle can perform several routes during
its workday, i.e. the vehicle comes back to the initial
depot at the end of its first route, it is loaded again,
it starts a new route, and so on.

The uni-modal planner is also executed daily. In this case,
the biggest daily problem has approximately 18 vehicles
and around 140 services.

4. TIMIPLAN

TIMIPlan is able to solve both multi-modal and uni-modal
logistics problems. It is composed of a set of modules
as shown in Figure 2. The input is the list of services
to accomplish and the list of available resources (initial
locations of each resource, costs, constraints, . . . ), both

in XML format. The output is a plan. This plan can
be graphically inspected on a map which includes points
where the actions are performed and the routes followed by
the vehicles. The Web access component performs different
queries to Web portals like Google Maps, postal codes
services or traffic information. The main module fuses all
the gathered data to generate the problem description
and delegates the work to the planning and monitoring
modules. Once TIMIPlan creates the problem description,
it is passed to the multi-modal or the uni-modal planner
(depending on whether the problem to be solved is multi-
modal or uni-modal). The Monitoring component in the
multi-modal case allows TIMIPlan to detect deviations
from the original plan, or new services to be planned
for, that arise everyday, and triggers replanning (as, for
instance, when a truck is damaged) when necessary. In
the uni-modal case, the Monitoring module allows users
to supervise the compliance of the plans, detecting delays
and damaged vehicles, and to notify these situations to the
users.

Fig. 2. TIMIPlan architecture.

For a full integration with the company’s information
systems, TIMIPlan has to support two modes of operation:
offline and online. The offline mode runs everyday to
generate the next day’s planning. In the online mode,
the system monitors the position of each resource, the
execution of actions and the replanning when necessary.
The system also incorporates a simulator that allows
users to analyze potential plan alternatives. The mixed
initiative module allows users to interact with TIMIPlan
in order to: include extra information in the problem;
plan to consider the constraints and goals that cannot be
formalized explicitly; or solve unexpected failures.

4.1 Planning Module

In this section, we describe the planning techniques we
have used to solve both problems.

Multi-modal Planner

We decompose the planning process of multi-modal
transportation problems into two phases. First, we com-
pute the assignment of trucks and containers to services
taking into account the initial positions of the trucks and



containers, using a Linear Programming (LP) approach.
Then, our approach sequentially solves the problem, using
three different steps for each service. In step one, the
container and truck/s with minimum cost estimated to
complete the service are selected. In step two, a planning
module is used to select the best path from a first pick-
up point to the last delivery point over the transportation
route. In this case, best means that the path fulfills the
given set of constraints, including the sequence of the
transportation modes used (where several trains and/or
ships can be used) with the minimum cost. This two-step
approach balances the total cost obtained and the time
required to compute the plan. The high level algorithm
has been depicted in Table 1. The network graph is the
graph defined by the locations (pick-up and delivery nodes,
positions of trucks, containers, train stations and ports)
and edges (roads, rails and ship lines). In step three, we
update the assignment of trucks and containers to services
taking into account the final position of the trucks and
containers used to complete the last planned service. In
the third step, we use the same LP approach again.

Multi-modal(G, F, C, R, B, S): plan

;; Inputs: the graph (G), the set of trucks (F), containers (C), trains (R), ships

;; (B) and services (S)

plan = ∅
;; Compute the initial assignment of trucks and containers to services (A)

A = solveAssignmentProblem(G, F, C, R, B, S)

For each s ∈ S

;; Select the truck/s and container to complete the service

selectedTrucks,selectedContainer= getServiceAssigment(A, s)

;; Plan the service with the truck/s and container selected. Select the best

;; transportation modes

plan = ∪ {solvePlanningProblem(selectedTrucks,

selectedContainer, R, B, s)}
;; Updates assignment with the new cost of selectedTrucks and

;; selectedContainer

A = updateAssignmentProblem(G, F, C, R, B, S)

Return plan

Table 1. Top level algorithm of multi-modal
planner.

Assignment Problem In the classical assignment problem,
the goal is to find an optimal (minimum cost) assignment
of resources to tasks taking into account the constraints,
and ensuring that all tasks are completed. In our case,
given the size of the whole assignment problem, we decom-
pose it into three subproblems. In the first subproblem, we
solve the assignment of empty containers to trucks. The
cost of a truck-container assignment is estimated taking
into account the distance between them, the time at which
they will be available and the transportation cost of each
truck. In the second subproblem, we solve the assignment
of trucks with containers to services, using the assignments
computed in the previous phase. These operations involve
the provision of an empty truck and container to the
service. The truck and container are used in the subsequent
transportation until they arrive to the last delivery point
in the service or until they arrive to a multi-modal node in
the transportation route. To estimate the assignment cost,
we consider the position and time of both the service and
the truck with container. In multi-modal transportation,
additional trucks are needed in order to complete a service.
These trucks pick-up the containers from the destination
station/port and transport it to complete the service, or

until they arrive to the next multi-modal node. So in the
third assignment subproblem, the method selects the best
truck to pick-up the container from the destination sta-
tion/port and continue the transportation route. It takes
into account again the previous assignments.

Planning Problem One of the inputs of the planning
process is the list of truck/s and container selected by the
assignment process for each service. A planning problem
is built for each service and the planner must select the
best transportation modes to complete it. Moreover, the
planner must schedule each pick-up and delivery according
to the constraints. First, it selects the trains and ships that
can potentially be used to complete the transportation
route. Then, the planning problem is constructed taking
into account the trains, ships and the truck/s and con-
tainer selected to complete the transportation route. In
our work, we use the SAYPHI planner (La Rosa et al.
[2007]) and we use A∗ as the search algorithm.

Uni-modal Planner

Multi-criteria optimization problems are characterized
by the fact that several objectives have to by simultane-
ously optimized. In this paper, we use the Multiobjective
Ant Colony System (MOACS) (Gambardella et al. [1999])
algorithm, based on MOACO aproaches. MOACS algo-
rithm uses two different ant colonies to minimize two dif-
ferent objective functions. The first colony minimizes the
number of vehicles, while the second colony minimizes the
total traveling time. In the original MOACS algorithm, the
first objective function takes precedence over the second
one. In this paper, we propose three modifications to the
original MOACS algorithms to work with the uni-modal
problem we deal with here.

(1) First, we consider two different objective functions:
to minimize the number of vehicles, O1, and to
minimize the total cost of the solution computed as
O2 =

∑n
i w(vi) + c(vi)d(vi), where n is the total

number of vehicles used in the proposed solution,
w(vi) represents the total waiting cost of the vehicle vi
computed at each service when it arrives before the
beginning of the time window, c(vi) is the cost per
kilometer of the vehicle vi, and d(vi) is the distance
in kilometers traveled by the vehicle vi.

(2) Second, TIMIPlan allows the users to select the
objective that takes precedence over the other one.
For the multiple objective algorithm described here,
we consider the weighted objective function O =
p1O1 + p2O2, where the user selects if p1 > p2 or
p1 < p2.

(3) Third, we have modified the original MOACS algo-
rithm to allow the same vehicle to be used several
times in the same planning process. If a vehicle arrives
to the depot, it may be re-selected to start a new
route, but taking into account the time at which the
vehicle completed the previous route.

4.2 Mixed Initiative

TIMIPlan implements a fully planning process that al-
lows the user, once the services are completed and the
available resources are provided, to automatically obtain
a complete plan. That plan takes into account most of the



constraints, but not all, because some cannot be repre-
sented or efficiently handled by the system. For example,
drivers prefer services near home or prefer to work only on
week days. In addition, several failures or changes may
occur once the services are planned, which in the real
word are fixed by humans in real time through phone
calls. Finally, human experts are usually suspicious of
tools that provide solutions which cannot be changed,
regardless of how sophisticated or intelligent the tool is.
Thus, a mixed-initiative component has been implemented
to allow the human planners to modify the plans provided
by TIMIPlan, according to their suggestions made during
the project. Currently, in the inter-modal case, they can
change means of transport, such as trucks, containers or
ships, and change the order of pickup and delivery oper-
ations. Instead, in the uni-modal case, they can change a
service or a vehicle from a planned route to another route.
All these changes are performed through the GUI, that
also propagates the effects of these changes: whether the
plan is still valid (it does not violate any constraint) and
what its new cost is.

4.3 Monitoring and Replanning

The monitoring component checks whether the execution
of the plan is deviating from the expected and triggers
replanning if needed. Given that we are dealing with a real-
time system, with a large number of resources involved, it
is not possible to replan from scratch. So, our replanning
component consists on adapting the existing plan to the
new state, aiming to perturb the original plan as little as
possible (also known as plan repair (Fox et al. [2006])). In
the multi-modal case, we consider three kinds of situations
that may occur during the monitoring process: damaged
trucks (providing new trucks to complete the service), new
services (planning the new service), and traffic jams (prop-
agating delays and recomputing costs). In the uni-modal
case, we consider two different situations: traffic jams
(acting in a similar manner as in the multi-modal case),
and unfulfilled services (these services are transferred to
the planning process of the next workday). If some other
unexpected situation arises during the monitoring process,
this module delegates on the mixed-initiative component,
allowing the human experts to solve it.

5. EMPIRICAL EVALUATION OF TIMIPLAN

This section presents the evaluation of TIMIPlan. To eval-
uate the planning module, we use a set of representative
problems, based on the real data gathered by the company.
For the multi-modal case, the problems were generated
using ship routes and pick-up and delivery points gathered
from real problems. There has been a positive qualitative
evaluation from users. Two versions of the multi-modal
algorithm are used to solve problems of different sizes.
Both versions differ on how they perform the first step of
the algorithm: the assignment of truck/s and container to
services. The first algorithm was explained in Section 4 (we
will call it TIMIPlan Multi-modal (LP)). In this algorithm,
LP techniques are used to solve the assignment of truck/s
and containers to services. In the second version of the
algorithm, a greedy approach is used to select at each step
the container and truck/s with least estimated cost for

each service (TIMIPlan Multi-modal (Greedy)). In this
case, no cost matrix is built as in the TIMIPlan Multi-
modal (LP) algorithm, selecting greedily for each service
the truck and container with the least estimated cost.
We define ten types of problems in ascending order of
size. Each problem has a linear increase in the number
of services (between 75 and 300), nodes (between 150 and
600), trucks (between 75 and 300), containers (between
75 and 300), ships segments (between 60 and 150) and
train segments (between 5 and 50). For each problem
size, ten different problems are solved in order to obtain
representative mean values and standard deviations. The
experiments were conducted on a 2,4 GHz quadcore pro-
cessor with 4 GB RAM, running Linux.

In order to analyze the sensitivity of both solutions to the
costs defined by the company, we studied three different
cost configurations, ordered in decreasing order of cost
(costs of configuration 1 are higher than those of configu-
ration 3). Figure 3 shows the comparison of quality (cost)
of solutions of the same problems solved previously using
the three cost configurations. In Figure 3, the costs are
expressed in millions of euros. In this case, the solid red line
labeled as TIMIPlan multi-modal (LP) shows the mean
costs and standard deviations obtained by the TIMIPlan
multi-modal algorithm when it uses LP, while the dashed
blue line shows TIMIPlan multi-modal (Greedy) behavior.
In all cases, the mean cost obtained by TIMIPlan multi-
modal (LP) is less than the cost obtained by the greedy
approach.

Fig. 3. Mean costs (in million euros) and standard devia-
tions for the three proposed cost configurations.

In the case of the uni-modal task, the problems were again
generated using services and vehicles configurations gath-
ered from real problems. Table 2 shows the time (in sec-
onds) to solve problems of different sizes using the TIMI-
Plan uni-modal algorithm proposed here, compared with
other multi-objective ant colony optimization algorithm,
M3AS, and simulated annealing. The TIMIPlan uni-modal
algorithm performs better than the other algorithms in
most of problems.

Table 3 shows the results of the TIMIPlan uni-modal
algorithm for different number of services using different
optimization criteria, where the problems have been gen-
erated using services and vehicles configurations gathered
from real problems. The column labeled as Optimization
represents the objective that takes preference over the
other one (e.g. O1 > O2 means minimizing the number of



Problem # Services TIMIPlan M3AS Simulated

Uni-Modal Annealing

1 10 0.44 0.43 1.74

2 40 1.74 1.86 5.89

3 100 44.54 45.90 50.96

4 150 171.72 172.73 169.23

Table 2. Time in seconds for solving problems
of different sizes by different algorithms.

vehicles takes preferences over minimizing the total cost).
The last two columns show the number of vehicles used
to fulfill the services and the total cost. The optimization
criterion O1 > O2 yields less number of vehicles to fulfill
the services than when using O1 < O2.

Problem # Services Optimization Vehicles Total Cost

1 5 O1 > O2 1 99.58

O1 < O2 2 85.54

2 50 O1 > O2 4 975.82

O1 < O2 6 864.45

3 100 O1 > O2 9 1817.76

O1 < O2 12 1512.96

4 140 O1 > O2 13 2674.52

O1 < O2 15 2412.96

Table 3. Number of vehicles and total cost for
different number of services.

6. CONCLUSIONS

In this paper, we have introduced TIMIPlan, a tool that
successfully solves the particular multi-modal and uni-
modal transportation problems of a big Spanish company.
Multi-modal transportation usually involves the combina-
tion of a large number of resources, together with tempo-
ral constraints, resource consumption, cost functions, etc.
Clearly the bottleneck in this problem is the combinatorial
explosion which makes obtaining optimal solutions impos-
sible in the time limit established by the company using
only classical planning or only OR techniques. Instead,
we decompose the problem into two different subproblems
combining the use of LP and automated planning. This
novel way of combining linear programming and planning
has allowed us to balance the total cost (quality) obtained,
the time required to compute a solution and the time to
model the different optimization problems. In the case of
the uni-modal transportation problem, we have introduced
several modifications to the original MOACS algorithm
to work with the real problem we deal with here. The
experiments show that the modified MOACS algorithm
successfully solves the uni-modal transportation problems
of the company using different optimization criteria.

In order to finally deploy TIMIPlan we have to pre-
process the databases (or include some kind of robust input
parsing in order to remove the possible errors), and setting
up GPS on both trucks and containers for monitoring and
replanning. As future work, we consider combining LP
and automated planning in a different way to find better
solutions (lower cost) in less time to solve the multi-modal
problem. In the uni-modal case, we forecast the use of
different algorithms based on heuristic search to solve the
problem.
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