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Abstract

This paper presents a general approach to automatically compile e-learning models to planning,

allowing us to easily generate plans, in the form of learning designs, by using existing domain-

independent planners. The idea is to compile, first, a course defined in a standard e-learning

language into a planning domain, and, second, a file containing students learning information into

a planning problem. We provide a common compilation and extend it to three particular

approaches that cover a full spectrum of planning paradigms, which increases the possibilities

of using current planners: (i) hierarchical, (ii) including PDDL (Planning Domain Definition

Language) actions with conditional effects and (iii) including PDDL durative actions. The

learning designs are automatically generated from the plans and can be uploaded, and subse-

quently executed, by learning management platforms. We also provide an extensive analysis of the

e-learning metadata specification required for planning, and the pros and cons on the knowledge

engineering procedures used in each of the three compilations. Finally, we include some qualitative

and quantitative experimentation of the compilations in several domain-independent planners to

measure its scalability and applicability.

1 Introduction

E-learning is becoming a high-impact innovative topic as it offers a promising way to facilitate and

enhance the learning process by combining learning objects (LOs), typically any sort of digital

resource, to create flexible courses. This flexibility and the availability of automatic tools to create

learning routes allows e-learning experts to focus on content authoring, and relieves them of the

burden of manually composing standard documents, such as learning designs, that fit the needs of

each student in a course.

Creating tailored routes of LOs, according to student profile preferences and/or pedagogical

theories, is a subject which has been studied in depth in the Planning & Scheduling (P&S) com-

munity within the last years (Mohan et al., 2003; Kontopoulos et al., 2008; Ullrich & Melis, 2009;

Castillo et al., 2010). Generating these routes depends on many elements: LOs prerequisites/

outcomes, LOs duration, available resources, and even collaboration and interaction between tutors

and students, which make the problem very interesting from the P&S perspective. However, acquiring
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information from educational domains to represent it as a planning domain is not a straight-

forward task because pedagogical theories are usually hard to model in practice. The main reasons

for this are: (i) there exist essential elements (e.g. soft and hard requirements among LOs,

deadlines, strong interaction between LOs or students, etc.) for the success of the learning process,

but are not thoroughly modelled in traditional e-learning settings; (ii) people give different

meanings and uses to the standard specifications, mainly in terms of the relations among LOs,

given that standards provide some flexibility on how to represent knowledge; and (iii) there

is a great variety of planning paradigms that support different aspects of expressiveness. In this

paper we explicitly address these drawbacks by providing an exhaustive mapping to interpret

LO metadata in terms of artificial intelligence (AI) planning, which can be easily extended to

support more complex features, not usually modelled in e-learning, and can be applied in different

planning paradigms.

Leaving the complex pedagogical decisions aside, in this paper we propose an alternative to

previous work that focuses on solving these three difficulties. We extend the work in Garrido et al.,

(2009), presenting a knowledge engineering approach to compile information about course

content and learners, subject to e-learning standards (IMSLD, 2003; IMSMD, 2003; Sharable

Content Object Reference Model (SCORM), 2004), and translating this information into a

planning domain and problem. The planning instances are used to automatically generate plans,

customized routes of LOs, that are translated into an IMS-LD (IMS learning design) standard

document (IMSLD, 2003). In essence, this paper contributes with:

> An automated translation of e-learning templates into a general compilation, further extended

with three different PDDL (Planning Domain Definition Language (Fox & Long, 2003))

versions: (i) hierarchical, (ii) PDDL-conditional, and (iii) PDDL-temporal. This allows us to use

our compilations in virtually any current planner.
> An effective use of planning technology to generate learning designs that best suit students

learning goals. Planners focus on finding the adequate LOs combination for students

adaptation, thus promoting a more personalized access to the LOs.
> A translator that parses the resulting plans and generates the IMS-LD standard document to be

uploaded to Learning Management Systems (LMSs), thus closing the e-learning cycle.

This paper is structured as follows. Section 2 introduces some related work on courseware

generation using planning techniques, some basic description on e-learning standards and moti-

vates our work. Section 3 analyses how to model learning designs in planning, and presents the

compilation of e-learning standards into planning domains and problems. Experimental results, by

using different planners, are detailed in Section 4. Finally, Section 5 concludes the paper and

addresses some future work.

2 Combining e-learning and artificial intelligence planning: motivation

There are many approaches in the adaptive hypermedia community that combine instructional

knowledge and planning techniques to deal with the automation of courseware generation. Some

of them introduce Hierarchical Task Network (HTN) planners to represent pedagogical objectives

to find a tailored course structure, such as Méndez et al. (2005) and Sicilia et al. (2006), which

provides a theoretical proposal. To our knowledge, the former does not integrate its results in

an e-learning platform, whereas the latter only provides Learning Object Metadata (LOM)

translations for HTN planning. The approach in Ullrich and Melis (2009) is complete and has

been put into practice specially for retrieving LOs from external repositories. Basically, it takes a

LOM subset to be integrated into a particular ontology with additional LO information by means

of a specific intelligent tutoring system, thus making it incompatible with other learning systems.

According to Ullrich and Melis (2009), they can map the final plan into IMS Content Packaging

or SCORM but not the IMS-LD model itself and they do not use standards in the definition

of the student profile. Others use state-based planners that implement metrics to measure the
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adaptation to a specific learning style (Boticario & Santos, 2007; Limongelli et al., 2008), but

without taking into consideration other profile features and different learning styles theories.

Finally, others incorporate machine learning techniques to assist content providers when

constructing LOs that comply with an ontology, concerning objectives and prerequisites, as can be

seen in Camacho et al. (2007) and Kontopoulos et al. (2008) with CAMOU and PASER,

respectively, but again, they do not use e-learning standards and usually focus on a particular

planner. Despite the relative success of these approaches, they are usually limited to a specifically

designed ontology and planning paradigm. Our main motivation (and contribution) is to overcome

such limitations.

First, our approach is entirely based on well-known e-learning standards, and not on particular

or ad-hoc ontologies. We use the IMS standard specification (http://www.imsglobal.org) supported

by major LMSs such as Moodle (http://moodle.org) and dotLRN (http://dotlrn.org),

which includes:

> IMS Meta-Data (IMS-MD) to describe LOs and their relations (see e.g. in Figure 2);
> IMS Learner Information Package (IMS-LIP) to model the student profile (see e.g. in Table 2); and
> IMS Learning Design (IMS-LD) to sequence the LOs according to the students profiles

(see Section 3.4).

Second, we use a pedagogical theory based upon learning styles, but other adaptation criteria

(see Essalmi et al., 2010) can be easily modelled as well. Hence, our approach provides the basis for

education experts to easily experiment with different learning theories. The overall idea is to make

the contents authoring easier and more adequate. As shown in Figure 1, the teachers design, from

scratch or by reusing LO collections, an e-learning course. The course designer may use our

authoring tool (see Garrido et al., 2009) to enrich the LO metadata by visually adding/deleting

relations, or even associating resources and costs to the LOs. This is not thoroughly modelled in

Figure 1 Overview of our entire system. LO5 learning object; PDDL5Planning Domain Definition

Language; LMS5Learning Management System.
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traditional e-learning settings, but it makes the use of planning techniques more flexible;

obviously, the enrichment of the metadata in our tool is entirely optional. The information about

the course is profile-independent, so it is valid for students with different learning styles. Once the

personal characteristics, background and preferences of the students are modelled, our translation

system automatically generates the planning domain and problem files according to three different

planning paradigms.

Third, our approach is appropriate for most of the existing planners, acting as domain-

independent solvers. This is a clear advantage as we are not restricted to one particular solver.

Once the solver generates a plan, as a LO route per student, it is subsequently compiled as an

IMS-LD. Finally, the result is uploaded to a LMS, which manages the administration, display,

tracking and navigation of the contents of the learning design, thus closing the cycle with standards.

3 Compiling e-learning models for planning

In our compilation we consider the repository of LOs as the planning domain, whereas the

relevant students characteristics and interests represent the planning problem. On the other hand,

the learning design represents the solution plan. In all cases, domain, problem and plan, the

information required for the compilation is fully automated by extracting the metadata specifications

from the e-learning standards.

3.1 Metadata for planning domains

A learning design is defined by a set of LOs, which are usually encoded as XML schemata

(see Figure 2). For example, in a course for learning Discrete-Maths, there may be a task for

learning Boolean-Algebra. And there could be several LOs to accomplish it, such as playing a

visual presentation, reading the introduction text from a textbook or solving an exercise. Although

it may be enough for the student to use only one of these objects to accomplish the task, it is still

possible to use more than one, thus improving the overall utility (reward) of the learning process.

And this usually depends on how the LOs are described by their metadata set:

> LOs are more or less appropriate to students depending on their learning styles. We use two

well-known theories to determine and classify students, the Felder learning style1 (Felder, 1996)

Figure 2 Two learning objects (LOs) of an XML course. Irrelevant information has been ignored

1 Felder learning styles comprise four dimensions: perception (sensitive/intuitive), processing (active/

reflective), input (visual/verbal) and understanding (sequential/global).
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and the Honey-Alonso learning style2 (Alonso & Honey, 2002), but any other theory can be

used to describe new ordering rules or utilities. Thus, we use the representation of the

pedagogical knowledge as defined in the metadata.
> LOs have dependency relations among them. For instance, before learning about Discrete-

Maths, the student should have some knowledge on Boolean-Algebra. We support four

types of relations that include hierarchical structures and content ordering relations. The

hierarchical structures use the IsPartOf relation, which represents a hierarchical aggregation of

LOs. Additionally, there are three types of causal dependencies, Requires, IsBasedOn and

References. We interpret the first two relations as hard preconditions. In the case of the Required

elements, all of them (conjunctively) have to be completed before initiating a new LO: if

‘A Requires B’ and ‘A Requires C’, both B and C need to be finished before doing A. In the case

of the IsBasedOn elements, at least one of them (disjunctively) has to be completed: if

‘A IsBasedOn B’ and ‘A IsBasedOn C’, only B or C must be completed before initiating A. On

the other hand, the course designer might also recommend (soft requirement) other previous

LOs by using the References relation.
> Each LO takes a standard time (duration) to fulfill, namely typical learning time. However, only

primitive LOs have duration, as the duration of aggregations is derived from their set of

aggregated LOs (e.g. Discrete-Maths in Figure 2).
> Each LO belongs to a learning resource type, such as a lecture, narrative text, diagram, etc. This

does not seem to be very relevant for planning, but according to education experts the learning

resource type highly interacts, positive or negatively, with the student profile. For instance, a

lecture is very recommendable for Felder verbal students but not for visual ones; and just the

opposite holds for a diagram. Or LOs can be displayed in different orders; for example, for a

Honey-Alonso pragmatic student, an experiment must be displayed before a narrative text, but

for a theoretical student this order must be inverted. The main inconvenience here is that these

resource types combine constructivist and traditional didactic approaches (Ullrich, 2008). That

is, some describe the format of a resource, but others cover the instructional type, which

represents different dimensions—there is a mix of pedagogical and technical/presentation

information. Therefore, the learning resource type may fail in representing a sufficiently precise

compilation if, for instance, a lecture contains an image or diagram, or an experiment is

described as a text. This may become problematic, but we rely our technical compilation on the

resource type, and delegate its significance entirely to the LO designer, who is the real expert in

pedagogic matters.

3.2 Planning domain compilation

The general algorithm to compile a planning domain is to iterate all over the LOs and generate one

action (or operator) per LO. This generation relies on a closed world assumption, and if new LOs

are to be used the domain must be recompiled. But note that only the LOs that are affected by the

changes need to be recompiled. For instance, assuming a domain of 10 LOs, which is extended

with two new LOs that only affect (i.e. are related to) one of the original LOs, we only need to

recompile and add 21 15 3 LOs. That is, although the LO repositories may change frequently, in

most cases the already generated domains may remain valid and we only need to add the new LOs.

This compilation is very quick, as each action only consists of five entries—name, parameters,

duration, preconditions and effects—which are automatically extracted from the values of the LO

metadata specification according to the mapping of Table 1:

> The name needs to be unique, which is not particularly hard to generate, because two actions

cannot have the same name.

2 This learning styles theory considers four styles that can be parallelized; for instance pragmatic/active and

reflexive/theoretical can be taken as two styles.
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> The use of a parameterized student facilitates the application of this action to different students,

and makes the definition of preconditions/effects more flexible.
> The action duration is calculated to model either a durative action, for example, as defined in level 3

of PDDL2.1 (Fox & Long, 2003), or as a numeric-valued fluent for metric planning optimization.
> The preconditions support all the dependency relations, according to the semantics

of conjunctive (Requires) and disjunctive (IsBasedOn) preconditions. A precondition (not

(action-name_done ?s)) is used to avoid planning the same action more than once. Further,

other educational requirements, such as the intended role of the student or the difficulty of the

LO, can be easily modelled.
> The effects encode the fact of attaining the outcome of the LO, that is, having the action done.

They also include a reward to offer a full support for LO adaptation to the students. This is

achieved in two ways. First, modelling both the learning resource type of each LO and the

student learning style, based on Felder classification, Honey-Alonso or any other classification.

Using recommendation tables, such as Baldiris et al. (2008), we know how good (value_LRT) a

given LO is for a learning style. Second, the References dependency relation also may increase

the reward by a given value_LRT when the student satisfies that recommendation. Again, this

value can be particularized to each learning style. Optionally, the compilation can include

numeric expressions or resource costs, as are common in P&S, and even a particular sequencing

used to assist hierarchical decomposition.

This mapping is very general in terms of the planning concepts. Although it comprises

many features, such as durations, conjunctive and disjunctive preconditions, propositional and

Table 1 General LO metadata mapping to PDDL actions—irrelevant information has been ignored

LO metadata item - PDDL action entry

general/{identifier or title} action-name, which may be a real, fictitious,

primitive or an aggregation action (also known

as task in HTN)

- :parameters (?s - student), to model the

student

if the LO is a primitive LO then :duration for temporal planners, or

:effect (increase (total_time ?s) value)
managed as an artificial fluent effect for

temporal and non-temporal metric planners

educational/typicallearningtime

else {aggregation of LOs}

sum of the educational/typicallearningtime
given by its IsPartOf LOs

dependency relations: :precondition

type of relation: (and (not (action-name_done ?s)), and
switch (relation/kind/value) if conjunctive precondition: (and y

case (Requires): conjunctive (and) precondition else-if disjunctive precondition: (or y

case (IsBasedOn): disjunctive (or) precondition for each catalogentry value:

the related LO: relation/resource/catalogentry (action-value_done ?s), which creates a

particular ordering (also required in HTN)

y other optional preconditions for profile

adaptation taken from educational item)

increase a reward (utility expression) or creating a :effect

particular ordering (useful in HTN) due to: (and (action-name_done ?s) y, to model

profile adaptation: that the action has been done, and

educational/learningresourcetype/value (increase (reward ?s) value_LRT)

additional adaptation by using a metric reward: (increase (reward ?s) value_References)

if relation/kind/value is References y other optional rewards and/or costs)

LO5 learning object; PDDL5Planning Domain Definition Language; HTN5Hierarchical Task

Network.
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numeric-valued representations, etc., it does not define other features such as hierarchical

structures. On the other hand, there are currently several planning paradigms and planners. Thus,

we instantiate this general algorithm to provide specialized compilations for different planning

paradigms. More particularly, we started with an extension of our general compilation to a

hierarchical compilation, and then we added two approaches for PDDL compilations. The first

one based on conditional effects, named conditional compilation, that encodes in one operator all

the profile adaptation options. Again, as many planners do not support conditional effects, we

provide an additional compilation where all operators are grounded, hierarchies are simulated by

means of dummy actions and actions can be durative (temporal compilation). It is important to

note that we are not proposing three different planning systems, but three compilations aiming at

covering practically the full spectrum of planning paradigms that exist today.

3.2.1 Hierarchical domain compilation

This compilation extends the general compilation with the following features:

> It is based on an extended version of PDDL for HTN planning (Castillo et al., 2006), which

includes a hierarchical representation of tasks and methods within a related temporal

framework that allows us to specify goal deadlines, temporal landmarking between actions

and a constraint propagation engine for exploiting the causal structure of plans.
> The profile adaptation is extended to offer different sequences of LOs according to the learning

resource type of the LO, particularly when there is no Requires relation between LOs that are

part of a task, as in Figure 3-1. This sequence is currently designed for the Honey-Alonso

theory, but it can be easily adapted to other theories or pedagogical desires.
> The IsPartOf relation defined in the LO metadata is used to generate aggregation tasks or

primitive tasks, that is, durative actions.
> The hierarchical structure is generated according to the dependency relations. If aggregated

actions are completely ordered by means of a Requires relation, a unique method is generated.

When there is an IsBasedOn relation with two or more actions, an auxiliary task must be created

with as many methods as actions related to this LO. The associated actions have preconditions,

but not their corresponding methods (see Figure 3-2,3). Finally, when a References relation

appears, an auxiliary task is created that includes two methods: one empty with no

preconditions, and another with a precondition on the student availability, as in Figure 3-4.

3.2.2 Planning Domain Definition Language-conditional domain compilation

This compilation extends the general compilation with the following features:

> It includes a full support for planning with conditional effects, which compress in just one

operator all the effects that depend on the student learning style. For instance, in Figure 4-1

Figure 3 Example of tasks and methods decomposition in the Hierarchical compilation
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there are four conditional effects that depend on the values active, reflective, intuitive and verbal.

This way, the operator encodes different effects or branches according to the student—the

values of the rewards are computed and normalized, by giving a numeric priority, according to

the work presented in Baldiris et al. (2008), but can be easily adapted to other pedagogical

preferences. Particularly, this example corresponds to a LO whose learning source type is

Narrative Text, the total_time is 9 and without Requires relations.
> The dependency relations (see Table 1) are generated according to the general semantics,

but now a LO with an IsBasedOn relation generates a fictitious action, because the student only

needs to follow one of the actions in the or-condition (see Figure 4-2). Thus, the corresponding

LO has two IsBasedOn relations (Boolean-Algebra-Simulation1 and Boolean-Algebra-Simulation2)

and four Requires relations (Algorithms, Logic-and-Sets, Minimization-of-Circuits and Logic-Gates).
> It represents thresholds for each student, such as (time_threshold ?s) or (reward_

threshold ?s). The former represents the total time the student devotes to the course,

whereas the latter models the utility of the course for the student. This allows us to easily model

rich constraints, such as (, (total_time ?s) (time_threshold ?s)).

3.2.3 Planning Domain Definition Language-temporal domain compilation

This compilation extends the general compilation with the following features:

> All actions are grounded according to the information of the students given in the problem (see

Figure 5). The instantiation is done according to a matching process with the student profile.

For instance, if we want to restrict a LO to be used only by a visual learning style, and we have

two students, with visual and verbal styles, respectively, the action is only generated for the first

student. The domains are now larger because we include all the applicable actions, rather than a

single operator with conditional effects. But, on the contrary, it generates valid domains for

planners that do not support such conditionality.
> It uses an entire numeric representation, which increases the expressiveness of the model and

allows us to include metric resources and cost to model more flexible metrics, as traditionally

used in P&S optimization.
> It generates both level 3 of PDDL2.1 durative actions and non-durative actions, where time is

modelled by means of the artificial fluent total_time.
> It simulates IsPartOf hierarchical structures under a flat model of PDDL actions. All actions in

an aggregation are enveloped within two dummy actions Start/End representing the

beginning/ending of the aggregation (see Figure 5-1,2). Start contains the preconditions of

the aggregation action and End its effects. On the other hand, the actions generated for all the

aggregated actions have that Start as precondition (Figure 5-3). Obviously, both Start and

End have duration 0.

Figure 4 Example of actions in the PDDL (Planning Domain Definition Language)-conditional domain. The

first action comes from a learning object (LO) with a ‘Narrative Text’ learning source type (the conditional

effects model the reward for each Felder dimension for this type), whereas the second uses an IsBasedOn relation
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3.3 Problems compilation

Once the domain is generated, we compile the planning problem. The IMS-LIP standard

(http://www.imsglobal.org/profiles) to access the student information is too wide, so we

extract the relevant characteristics and compile them into a planning problem. The proposal

is valid for our three approaches, although the translation differs slightly for the temporal

compilation, where the problem is (interactively) generated together with the domain because of

the grounded approach (Garrido et al., 2009).

The planning problem includes propositions to represent the objects, the initial state, the

goals and the metric to optimize. The objects represent the students information for the learning

design and their previous knowledge. The initial state represents the students profile, the initial

values of the fluents, the language of the course and some other information (e.g. student

performance, special equipment, availability, etc.). The goal is to pass the entire course or

a part of it. Table 2 shows the mapping to automatically translate an IMS-LIP structure into

a planning problem. The first column represents the IMS-LIP entry and the second one the

corresponding item in the planning problem. As can be seen, the problem compilation is simpler

than the domain compilation, as it basically consists in generating the initial values and goals

for the objects.

3.4 Plans compilation

After compiling the planning domain and problem, we run a domain-independent planner to find

a plan. The quality of the plan itself depends on the planner quality; some planners are optimal

and return the best solution, but others return just one solution. Consequently, the domain/

problem compilation has not a relevant impact in that quality. In this compilation, we translate

the plan into the e-learning standard IMS-LD. Each plan represents the learning design as a route

of LOs that best suits the student, which will be later displayed in a LMS. Since current LMSs

support different languages, we have implemented translators for two of the most common

systems: IMS-LD for dotLRN and Moodle templates. In the first case, we create a zip file that

contains the input resources (LOs) as well as the learning design as an XML file. Our algorithm

compiles the next six items in the XML file:

> Goals, which are taken from the goals of the planning problem, usually the effects of the final

action of any domain.

Figure 5 Durative actions for student Std1 generated for the two learning objects (LOs) of Figure 2

according to the PDDL (Planning Domain Definition Language)-temporal compilation. We assume in our

problem that Std1 is verbal. Since the learning resource type of Basic-Algorithms is ‘Narrative Text’
(see Figure 2) and the student is verbal, this means a reward in the learning process of 40. The values of all the

rewards are given by the educational experts
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> Prerequisites, which are taken from the initial conditions on previous knowledge that is required

to follow this course. They are the links to LOs or objectives of other courses, which allow us to

perform multiple course planning in the future.
> Roles. In this case, the only role is the student for whom the learning design is generated.
> Activities, which are taken from the plan. Iterating for each action, an IMS-LD activity entry is

generated, which also includes a link to the corresponding LO. Obviously, all fictitious actions

used during planning are now omitted.
> Activity structure, which relates to the plan itself and its route of actions. Given that the

IMS-LD standard allows other control structures, such as conditional plans with branches, in

the future we will study how to generate conditional plans and the impact it has on the fact that

students may execute different alternatives.
> Resources. For each LO in the input IMS-MD, a resource, that can or not be used in the plan,

is defined.

The second translator compiles the plan into a Moodle template that describes an XML file,

which is related to the course previously implemented in Moodle. The compilation algorithm is

straightforward, as the XML document simply contains the student identifier and an enumeration

of the LOs to be executed. The sequence in which LOs appear in the document corresponds to

the particular ordering for each student, which helps the student explore and navigate through

the course.

3.5 Approaches comparison

Table 3 shows the differences between the three compilations from a knowledge engineering

perspective based on several characteristics. Although the underlying semantics in the three

compilations is the same, each compilation adapts more naturally to each learning language. More

specifically, the Hierarchical compilation adapts better to the Moodle format in terms of domain

and problem, whereas the Conditional one adapts better to the IMS-MD standard. This is because

of the nature of the Moodle courses, which usually focus more on the inner structure of the course,

Table 2 IMS-LIP mapping to a problem compilation—irrelevant information has been ignored

IMS-LIP - Planning problem

identification/name/contentype/

referential/indexid

:objects student-name, checking its uniqueness

accessibility/preference/typename/

typevalue/Learner_Style_Processing/

prefcode/profile-type.value

:inits (profile-type student-name value)
e.g. :inits (reflective student1 strong)

goal/typename/typevalue/course-name/

contentype/temporal/typename/

time_threshold/temporalfield/value

:inits (5 (time_threshold student-name) value)

:goals (5 (course-name_done student-name))

e.g. :inits (5 (time_threshold student1) 3800)

e.g. :goals (course-name_done student1)

activity/typename/typevalue/task/

learningactivityref/text/object-name

:objects object-name
:inits (known student-name object-name)

e.g. :objects graph_theory

e.g. :inits (known student1 graph_theory)

accessibility/language/typename/

typevalue/lang-value

:inits (language_level lang-value student-name high)

e.g. :inits (language_level English student1 high)

competency/contentype/referential/

indexid/performance-level/

description/short/value

:inits (performance_level student-name high)

e.g. :inits (performance_level student1 high)

IMS-LIP5 IMS Learner Information Package.
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rather than IMS-MD, which focuses more on the definition of particular LOs and leaves apart

somewhat the relations between LOs. On the other hand, the Temporal compilation accepts both

formats, as it manages both hierarchical and flat structures. The planning goals, deadlines (time

limit devoted to the course) and prerequisites (student’s previous knowledge for the course) are

defined in the IMS-LIP for the Hierarchical and Conditional approaches, whereas the Temporal

compilation uses the data defined in the problem. The row Dependency relations considers the

types of relations supported by the different approaches. Students profiles refer to the styles that

are currently supported, but this can be easily extended. Soft preconditions refer to the fact that

the learning design can contain LOs that, without being mandatory, provide some benefit to

the student. This is possible through the methods in the Hierarchical approach and through the

precondition (, (total_time ?s) (time_threshold ?s)), which allows the Conditional

representation to include more LOs than strictly necessary. Time management represents how the

approaches deal with time. The row Metrics means whether the approach can manage quality

metrics or not. The row Planner represents the planner required to solve the problems modelled by

each compilation. The last row shows how the plans, which the corresponding planner generates,

comply with Moodle and IMS-LD.

In summary, the Hierarchical compilation permits modelling many e-learning features, but only

the planner SIADEX (Castillo et al., 2006) supports them, and it does not support quality metrics

yet. The other compilations use PDDL and deal with optimization metrics, such as maximizing the

learning reward. However, most state-of-the-art planners cannot maximize metrics, so a metric for

maximizing the total utility that the LOs report to the student cannot be always used and

represents an important challenge for existing planners. From a pedagogical side, it is not easy

(nor possible) to transform the metric for maximizing the reward into a metric for minimizing its

inverse, due to how rewards are computed in this domain. In particular, we use a mapping defined

in Baldiris et al. (2008) that contains information on whether the learning resource type is good,

very good or indifferent for each learning style. But we cannot assert anything about the inverse.

For instance, it is untrue that if a lecture is very good for a reflective student it has to be very bad

for a non-reflective student. So, it is unclear which values to assign to those cases not covered in

Baldiris et al. (2008).

The main conclusion is that there is not clearly a best approach. In some cases, the hierarchical

compilation shows more natural (particularly when there are many IsPartOf relations); in others,

the conditional compilation is very appealing to model and subsume all alternative branches that

Table 3 Comparison of the three compilations

Characteristic Hierarchical PDDL-conditional PDDL-temporal

Domain definition Moodle IMS-MD Both

Problem definition Moodle and IMS-LIP IMS-LIP Interactively

Goal definition IMS-LIP LO in MD and IMS-LIP Problem

Deadline definition IMS-LIP IMS-LIP Problem

Prerequisite definition IMS-LIP IMS-LIP Problem

Dependency relations All IsBasedOn All

Requires

Students profile Honey-Alonso Felder Both

Soft preconditions Tasks and methods Domain Domain (using References)

Time management Durative actions Fluent Both

Metric No Yes Yes

Planner SIADEX Conditional effects Temporal

Metrics Metrics

Plan compilation Moodle/IMS-LD Moodle/IMS-LD Moodle/IMS-LD

PDDL5Planning Domain Definition Language; IMS-MD5 IMS Meta-Data; IMS-LIP5 IMS Learner

Information Package; IMS-LD5 IMS learning design; LO5 learning object.
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students may follow; and in other cases, the temporal compilation shows more expressive, because

of its simulation of hierarchical structures and use of a complete numeric representation.

4 Experimental results

In this section, we perform a quantitative and qualitative evaluation. From a quantitative

perspective, we are interested in technical experiments to assess the correctness of the compilation

schemas from a planning perspective. Thus, we have run some experiments with four courses

defined in IMS-MD. The first one is a complete AI course containing LOs for covering all the

typical tasks, such as reading a subject, practising, programming, performing exams, etc. Each

task includes from one to six optional ones with different degrees of adequacy to the learning

styles. The course has 172 LOs, 32 of them representing common tasks and 14 hierarchical

aggregations. This course contains enough LOs for testing the planning complexity and for

covering realistic-size courses. The other courses, Representation, Planning and Search,

are subsets of this.

After compiling the IMS-MD course following the three approaches, we have defined the

corresponding planning problems. All the compilation processes finished in a few seconds. We have

used one planner for each compilation: SIADEX for the hierarchical domain, CBP (Fuentetaja et al.,

2009) for the Conditional domain and LRNPLANNER (Garrido & Onaindı́a, 2010) for the Temporal

domain. We have also analyzed the applicability of many state-of-the-art planners that participated

in the ICAPS planning competitions (http://ipc.icaps-conference.org), but they do not

support all the domain requirements at the same time, that is, conditional effects, or and negative

preconditions, fluents and cost metrics. Therefore, we have used these three planners because they

support all the domain requirements for each compilation and are sound (all their generated plans

are valid). SIADEX is a knowledge-based HTN planner with temporal features. CBP includes the

original algorithms of METRIC-FF, and it also implements new heuristics and algorithms to better deal

with cost metrics—the original METRIC-FF could not solve all the tested problems. LRNPLANNER deals

with durative actions and metrics. We also tried to solve the durative problems with MIPS-XXL but it

has scalability problems due to the numeric representation; all the information is encoded as

numeric functions and current planners have problems with this kind of reasoning.

First, we performed some experiments to analyze the scalability of the approaches. We considered

problems with 1, 2, 4, 8, 16, 32 and 64 students and measured the running time for solving the

problems. For the longest course (AI course), the time to solve the problems ranged: in theHierarchical

approach from 0.04 s for 1 student up to 97.41 s for the 64 students; in the Conditional one from 0.47 s

to 455.94 s; and in the Temporal one from 0.07 s to 37.29 s. The execution time for the other domains

were proportional to the course size and number of students (we do not show detailed results for lack

of space). This means that all the approaches can cope well with a reasonable number of students.

The size of the plans ranged progressively: in the Hierarchical approach from 86, 172 (86*2),

258 (86*3)y 5504 (86*64) actions for 1, 2, 3y 64 students, respectively; in the Conditional one 78,

156 (78*2)y 4992 (78*64) actions; and in the Temporal one from 66 to 4224 (66*64) actions.

Second, we performed other experiments to test the quality of the plans, that is, e-learning

designs. Obviously, quality depends on the pedagogical theory used and how it is defined by

the education experts. In our approach, theHierarchical domain is based on the order in which the

LOs are presented to each student, while the Conditional and Temporal domains are based on the

utility (reward) theory mentioned above. There are very specific courses with evaluations based on

a student satisfaction-oriented perspective (Castillo et al., 2010). But our tested courses are more

generally designed and use a theory that implies the planner should find a plan that maximizes

the total reward without exceeding the total time the student can devote to the course. That is, the

solution plan must contain as many LOs that fit the particular student profile as the time constraint

allows. For example, the plan for an active student should contain LOs that the recommendation

table in Baldiris et al. (2008) suggests for active students. However, as current state-of-the-art

planners cannot maximize metrics, we have transformed the reward maximization into a penalty
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minimization metric. As mentioned before, there is not an exact transformation of metric for

maximizing the reward into a metric for minimizing its inverse, so we use an approximation. The

recommendation table contains information on whether the learning resource type is good, very good

or indifferent for each learning style. We use a penalty PDDL-fluent that increases in two units each

time the plan includes an indifferent action, in one unit when it includes a good action, and there is

not penalty for very good actions, but this can be easily modified to other values. This way, we guide

the planner to include very good actions in the plan, that is, actions that provide greater reward to

the student. We vary the domain and the student profile, and measure: (i) the size, that is, number of

LOs in the solution plan, (ii) the total time and penalty of the learning design and (iii) the differences

between plans. For these differences, we take the first plan (the one for the active student) as the base

plan and count the number of LOs in the other plans that are not included in it as a measure of

adaptation to students. The bigger the difference is, the more actions are found for that particular

type of student that are not suggested in the baseline. In the Hierarchical approach, the differences

are the number of LOs that are presented to the student in a different order than the base plan. We

consider problems with the four profiles in the Honey-Alonso taxonomy, that is, active, reflexive,

theoretical and pragmatic, which correspond to the active, reflective, intuitive and sensitive ones in

the Felder taxonomy, respectively. Table 4 shows the results. The rows represent the planning

problems: student profile (P: 1-active, 2-theoretical/intuitive, 3-pragmatic/sensitive and 4-reflective)

and courses (the first four rows correspond to the Representation course, the following four rows to

the Planning course, the following rows to the Search course and the last ones to the complete AI

course). Columns represent: number of LOs in the plan (LOs), total time (Ti) of the course, penalty

(Pe) and number of differences (Di). The Conditional approach uses an additional reward threshold;

a plan is valid only if the total reward is equal or greater than this threshold, which poses the

question of setting the initial reward threshold value. We have initially set it to zero and executed the

planner. The reward obtained in the solution plan is the threshold value used in the experiments.

As the base case we used the solution returned by CBP without using any metric nor reward threshold.

Table 4 Experimental results for the adaptation of plans

Base case PDDL-conditional PDDL-temporal HTN-PDDL

P LOs Ti Pe Di LOs Ti Pe Di LOs Ti Pe Di LOs Ti Di

1 15 650 10 29 825 6 20 755 7 14 650

2 15 650 7 0 30 935 10 7 20 815 10 2 14 650 0

3 15 650 16 0 28 735 11 1 20 755 11 0 14 650

4 15 650 7 0 30 845 10 6 20 755 11 0 14 650 0

1 13 510 7 26 715 1 12 570 1 13 600

2 13 510 4 0 18 660 3 10 12 420 3 3 13 600 13

3 13 510 10 0 27 625 2 2 12 570 12 0 13 600

4 13 510 4 0 18 720 4 8 12 510 4 2 13 600 13

1 40 1430 29 49 1785 17 40 1730 12 44 1620

2 40 1430 14 0 51 1685 14 11 40 1430 14 9 44 1620 31

3 40 1430 34 0 46 1455 19 10 40 1620 14 4 44 1620

4 40 1430 17 0 48 1595 15 10 40 1430 17 9 44 1620 31

1 66 2530 45 81 2925 22 66 2655 26 86 3290

2 66 2530 28 0 87 2845 27 23 66 2335 29 14 86 3290 55

3 66 2530 59 0 80 2595 34 11 66 2705 37 2 86 3290

4 66 2530 32 0 84 2815 30 18 66 2215 38 14 86 3290 55

PDDL5Planning Domain Definition Language; HTN5Hierarchical Task Network; LOs5 learning

objects; Ti5 total time of the course; Pe5 penalty; Di5 number of differences.

Running time was ,0.2 s in all cases.
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The total time thresholds (maximum time the student can devote to the course) were bigger

enough, that is, there were not time constraints.

The results show that the plans generated with the Conditional and Temporal approaches better

adapt to the student profile. Even though there are fewer LOs in the base plans than in the others,

the penalty is nearly always greater. That means that our approaches find learning designs with a

higher number of LOs, that is, the student has more possibilities to better learn the course, and

most of them are very good for its profile. The Hierarchical approach also shows adaptation to the

student profile according to the theory it is based on: it only distinguishes two kinds of students,

pragmatic and theoretical ones (the active style is considered as pragmatic and reflective as

theoretical). The plans generated for both kind of students contain several actions in different

order, but the first domain is too simple to appreciate this difference.

Finally, in order to verify that the e-learning designs obtained by applying the proposed

methodology are valid, that is, correctly specified, we have compiled the plans into the e-learning

standard IMS-LD and we have correctly uploaded the resulting XML files to the learning

dotLRN (www.dotlrn.org) and RELOAD (http://www.reload.ac.uk) platforms.

On the other hand, a thorough qualitative evaluation of the approaches is difficult, as it

involves the collaboration of educational researchers for a correct definition of the courses and for

a comprehensive testing with real students. The work presented in Castillo et al. (2010) reports

some preliminary experiments in this direction for the Hierarchical compilation. The main result

here is that it is not easy to measure the goodness of our approach via the students grades/scores,

as following a learning design does not necessarily mean achieving a better grade. Therefore, we

have designed a brief questionnaire to evaluate the quality of the learning designs, that is, plans for

the whole AI course detailed above, and their adequacy to the students’ profiles from the lecturer

perspective. Table 5 shows the results of this evaluation by nine lecturers of AI courses, in terms of

the three different compilations and two different learning styles. In particular, the first three rows

(questions) refer to the votes for the plans obtained for active/pragmatic students, whereas the

following three are for the reflective/theoretical ones. In general, the experts agree (though not

very strongly) with the designs given by the three compilations in terms of their form, size and

adaptation to the students. The main reason why there were not more strongly agree answers was

that we had loosened too much the constraints (relations) among LOs, thus allowing the planners

to generate plans with non-standard orders in the sequence of activities. Even so, the generated

orders were correct with respect to the initial LOs. Also, an additional test with respect to the

compilation with the most coherent and consistent sequence of LOs shows that one lecturer

Table 5 Questionnaire for a qualitative evaluation of learning designs by nine lecturers

Strongly disagree Disagree Neutral Agree Strongly agree

Question C T H C T H C T H C T H C T H

Q1 2 1 2 3 4 4 4 4 1 1 1

Q2 2 1 4 5 5 2 2 4 1 1

Q3 1 1 7 7 5 1 4 1

Q1 2 2 2 4 4 4 2 4 1 1 1

Q2 1 3 6 4 5 1 2 4 1

Q3 1 1 1 7 6 3 1 6 1

PDDL5Planning Domain Definition Language; HTN5Hierarchical Task Network; LOs5 learning

objects.

C, T and H stand for PDDL-conditional, PDDL-temporal and HTN-PDDL compilations, respectively.

Q1. The number of LOs is appropriate for the course.

Q2. The duration of the LOs sequence is appropriate.

Q3. The adaptation of contents to the students learning style is appropriate.
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prefers the conditional compilation, three the temporal conditional and five the HTN one, as it

seems more natural. Finally, and according to the lecturers opinion, it is extremely hard to design

(and evaluate) an adequate learning design to each profile, but they agree with the usefulness of

applying planning technology to help their labor.

5 Conclusions and future work

This paper has contributed with both a general and three instantiated approaches for automatic

compilations that interpret and translate e-learning models to planning. A course definition is

represented as a planning domain, the student learning information as a planning problem for that

domain and the learning design as the plan generated by a domain-independent planner. Our three

different compilations of planning domains and problems allow current planners to automatically

generate valid learning designs. Our experimental results have raised challenges and shown

scalability limitations in some cases. Also, a complete analysis of our compilations has allowed us

to detect three important drawbacks that show semantic gaps between the pedagogical decisions

and the automated translations. First, instructional designs are complex to model; they tend to be

theory-independent and do not capture the pedagogical knowledge required to generate a course.

Second, e-learning languages are usually too generic and try to cover too many aspects, making

the implementation of general and suitable translators for all LMSs very difficult and, in some

cases, slightly imprecise (e.g. the learning resource types). Third, despite the expressive power of

e-learning languages, there are still some aspects that cannot be represented and are essential in

P&S. For example, the definition of the resources involved in the tasks, their costs, the temporal

constraints on availability and how these resources are to be managed are important lacks in

e-learning languages. In other words, e-learning standards still miss some information for

pedagogically interesting planning. Analogously, a more flexible approach for requiring/achieving

the learning outcomes is also missing. For instance, the execution of a task may result in a higher

effect in one student than in another, depending on the student learning style. Informally, two

students do not learn the same with the same task, and the definition of this type of conditional

effects should be available in the e-learning standards. We have solved this problem by imple-

menting pedagogical suggestions into the compilers. But all in all, our compilations show very

appropriate for integrating e-learning standards and AI planning, while also providing the strong

foundations to be extended to other particular education theories.

In the future, we intend to overcome the previous drawbacks by addressing three parallel lines.

First, coming up with more expressive models of actions for planning e-learning activities, thus

augmenting the semantics of the model, which will increase the opportunities to: (i) deal with complex

course composition, and (ii) validate and resolve courses with similar but incommensurate LOs.

Second, extending our system to assist the course designer in making sure that the same naming

conventions are used by adopting a standard or common ontology, as proposed in Kontopoulos

et al. (2008), thus avoiding unsolvable situations (e.g. having a LO requiring knowledge on planners

and a student knowing about planning systems). Third, working on the actual execution of courses

and the dynamic planning adaptation of courses with respect to the real behavior of students.
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