Prog Artif Intell (2013) 2:13-27
DOI 10.1007/s13748-012-0026-6

REGULAR PAPER

Learning domain structure through probabilistic policy reuse

in reinforcement learning

Fernando Fernandez - Manuela Veloso

Received: 9 July 2012 / Accepted: 14 September 2012 / Published online: 13 October 2012

© Springer-Verlag Berlin Heidelberg 2012

Abstract Policy Reuse is a transfer learning approach to
improve a reinforcement learner with guidance from pre-
viously learned similar policies. The method uses the past
policies as a probabilistic bias where the learner chooses
among the exploitation of the ongoing learned policy, the
exploration of random unexplored actions, and the exploita-
tion of past policies. In this work, we demonstrate that Policy
Reuse further contributes to the learning of the structure of
a domain. Interestingly and almost as a side effect, Policy
Reuse identifies classes of similar policies revealing a basis
of core-policies of the domain. We demonstrate theoretically
that, under a set of conditions to be satisfied, reusing such a
set of core-policies allows us to bound the minimal expected
gain received while learning a new policy. In general, Policy
Reuse contributes to the overall goal of lifelong reinforce-
ment learning, as (i) it incrementally builds a policy library;
(i1) it provides a mechanism to reuse past policies; and (iii) it
learns an abstract domain structure in terms of core-policies
of the domain.

Keywords Probabilistic Policy Reuse - Transfer learning -
Reinforcement learning - Domain structure learning

1 Introduction

Reinforcement Learning (RL) [1,2] is a powerful technique
for learning to solve different kinds of tasks. Solving the
task consists of learning a near-optimal policy for such task.

F. Fernandez ()
Universidad Carlos III de Madrid, Leganés, Spain
e-mail: ffernand @inf.uc3m.es

M. Veloso
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: mmv@cs.cmu.edu

In the best case, such policy will be near-optimal for the
task, i.e., will maximize the long-term sum of the rewards
obtained. The learning process is based on a trial and error
process guided by reward signals received from the environ-
ment. Classical RL algorithms such as Q-Learning [3] rely
on an intensive exploration of the action and state spaces.
Due to the “curse of dimensionality” of such spaces in com-
plex domains, solving a task typically requires an extensive
interaction of the learning agent with the environment.

Although the cost (time, resources, etc.) of such a learn-
ing process may be very high, sometimes the task can
be tackled and successfully solved [4,5]. There have been
many different efforts to address the complexity of learn-
ing. Reusing the knowledge acquired in the current learning
process when solving future problems, so the cost of future
learning processes is reduced, is an appealing idea. In RL,
several efforts have been done in this line, such as the trans-
fer of value functions [6], the reuse of options [7] and the
learning of hierarchical decompositions of factored Markov
Decision Processes (MDPs) [8].

In this manuscript, we report on Probabilistic Policy
Reuse, an approach for transfer learning based on the reuse
of similar action policies. It is based on our research in
the related areas of Symbolic Plan Reuse [9] and Extended
Rapidly-exploring Random Trees (E-RRT) [10]. Planning
by analogical reasoning provides a method for symbolic
plan reuse. However, when reusing a past plan, if a step
becomes invalid to use in the new situation, the traditional
reuse questions are either (i) to resolve the locally failed
step and direct the search to return back to another past
plan step, or (ii) to completely abandon the past plan and
re-plan from scratch from the failed step directly toward
the goal. E-RRT solves this general reuse question by guid-
ing a new plan probabilistically with a past plan. The past
experience is effectively used as a bias in the new search,

@ Springer

14

Prog Artif Intell (2013) 2:13-27

and thus solves the general reuse problem in a probabilistic
manner.

Learning structure in complex domains is a key chal-
lenge for scaling up applications, in particular because of
the difficulty in finding similarity metrics to determine com-
monalities in a complex domain. In this article, we con-
tribute a method to identify equivalence classes of domain
states through our developed Policy Reuse. When solving
a new problem, Policy Reuse utilizes the past policies as a
probabilistic bias where the learner faces three choices: the
exploitation of the ongoing learned policy, the exploration
of random unexplored actions, and the exploitation of past
policies. As a past policy becomes relevant to solving a new
task, such effective reuse reveals the similarity between the
past and new task. Domain structure is then incrementally
learned through Policy Reuse, as we present.

Therefore, a side-effect of Policy Reuse is its capability
to identify classes of similar policies revealing a basis of
core-policies of the domain. That allows to build a library of
policies to be reused in the future, by using the PLPR algo-
rithm (Policy Library through Policy Reuse). In this work,
we contribute new theoretical results, and we show that,
under a set of conditions to be satisfied, reusing such a set of
core-policies allows us to bound the minimal expected gain
received while learning a new policy. We introduce new def-
initions, as the §-Basis-Library of a domain, which defines a
library of core policies which is large enough to successfully
obtain accurate results in a Policy Reuse process.

In this paper, we also include additional evaluations over
classical exploration strategies (like e-greedy and Boltz-
mann) to show the advantages of Policy Reuse in the grid
domain. Policy Reuse can also be applied to domains poten-
tially more complex, such as the Keepaway domain [5].
The challenge in Keepaway is to transfer learned knowledge
from simpler (although continuous) to larger state and action
spaces, e.g., from a Keepaway problem with some number
of teammates and opponents to a new one with larger num-
ber of agents. The use of Policy Reuse for transfer learn-
ing among different state and action spaces (typically called
inter-task transfer [11]), and its evaluation in the Keepaway
can be found in the literature [12—14]. Variations of Policy
Reuse algorithms can also be found for multi-robot recon-
figuration [15] and learning from demonstration, also in the
Keepaway [16]. In this work, we use a grid-based domain
that allows us to highlight some properties which are more
difficult to represent in other domains. The same domain has
been used in other works [17].

In summary, the main contributions of this manuscript are,
on the one hand, to show empirical and theoretical results
about how the similarity metric among policies work, why
it is useful to select the policy to reuse from a set of past
policies, and how to use it to bound the gain that can be
obtained by reusing a policy library. On the other hand, to

@ Springer

demonstrate how Policy Reuse learns the domain structure
of a domain in terms of libraries of core-policies, which can
be used in future learning tasks.

This manuscript is organized as follows. Section 2 sum-
marizes relevant related work. Section 3 introduces Policy
Reuse in the scope of Reinforcement Learning, and formal-
izes the concepts of task, domain, and gain. Section 4 defines
the m-reuse exploration strategy, a similarity metric among
policies, and the PRQ-Learning algorithm. Section 5 presents
the PLPR algorithm, and provides theoretical and empirical
results that demonstrate the capability of the algorithm to
build the basis of a domain as a set of core-policies, and
bound the sub-optimality of the transfer learning. Section 6
shows the empirical results. Finally, Sect. 7 summarizes the
main conclusions of this work.

2 Related work

Policy Reuse is a transfer learning method. It uses past poli-
cies to balance among exploitation of the ongoing learned
policy, exploration of random actions, and exploration toward
the past policies. The exploration versus exploitation prob-
lem defines whether to explore new or exploit the knowledge
already acquired. The limits are defined by the random and
the greedy strategies, and several can be found in between,
as e-greedy and Boltzmann [2]. Directed exploration strate-
gies memorize exploration-specific knowledge that is used
for guiding the exploration search [18]. These strategies are
based in heuristics that bias the learning so unexplored states
tend to have a higher probability of being explored than
recently visited ones. These strategies only use knowledge
obtained in the current learning process.

Several methods aim at improving learning by introducing
additional knowledge into the exploration process. Advice
rules [19] define the actions to be preferred in different sets
of states. In this case, the source of the advice rules is the
user, which is the source of exploration knowledge in many
other approaches [20]. Different knowledge sources can be
used, as a mentor, from which policies can be learned by
imitation [21]. In the previous cases, as in Policy Reuse, the
advice is about policies rather than Q values.

Transfer learning refers to the injection of knowledge from
previously solved tasks. Memory guided exploration [22]
incorporates knowledge from a past policy in a new explo-
ration process by weighting the Q values associated to the
new and the past policy. However, that requires that the val-
ues of both Q functions are homogeneous and a perfect map-
ping between the past and the new Q function. The problem
can be solved by weighting the probability of selecting each
action, instead of the actual Q values [23]. In any case, the
choice of a correct weight decay to balance correctly the use
of the past and the new policy relies on the designer.

Prog Artif Intell (2013) 2:13-27

15

Transfer learning, as knowledge reuse across different
learning tasks, can be performed by initializing the Q-values
of a new episode with previously learned Q-values [24,25].
However, if the source and target tasks are very different,
transfer learning may require expert knowledge to decide on
the feasibility of the transfer, and on the mapping between
actions and states from the source and target tasks [26]. Some
methods try to solve this problem through a study of actions
correlations [27], through state abstraction [28], or by defin-
ing the relationships between the state variables of the source
and target MDP’s [29]. Value function transfer is an alterna-
tive but it is restricted to previous learning processes per-
formed also through a value function. Furthermore, they do
not focus on the case where several tasks have been previ-
ously solved (several value functions have been learned) and
are susceptible to be reused.

A different way of introducing previous knowledge is by
executing macro-actions or sub-policies. For instance, some
algorithms use macro-actions to learn new action policies
in Semi-Markov Decision Processes (SMDPs), as it is the
case of TTree [30]. These macros can also be defined using a
relational language, and learned using Inductive Logic Pro-
gramming (ILP) techniques [31]. Options can also be used
in SMDPs [7]. They require the set of states from which
they can be executed, an end condition and the behavior of
the option. Such a behavior can be learned on line [32], as
well as the other components of the option [33]. Other ways
to transfer knowledge is through the use of set of rules that
summarizes polices [34] or by composing solutions of ele-
mental sequential tasks [35].

Hierarchical RL uses different abstraction levels to orga-
nize subtasks [36], and some approaches are able to learn
such a hierarchy [37]. The methods for learning hierarchies
or options capture the structure of the domain. Some related
algorithms are SKILL [38], which discovers partially defined
policies that arise in the context of multiple tasks in the same
domain, and L-Cut, which discovers subgoals and corre-
sponding sub-policies [39]. Sub-policies can suboptimally
solve a task with computable bounds [40]. Other methods
incrementally build a cache of policies for a decomposed
MDP [41], but also following a hierarchical approach.

Probabilistic Policy Reuse establishes a huge difference
with previous works based on options, macro-actions or hier-
archical RL. Those methods are built on a basis where, once
a sub-policy is selected, it is followed until an end condition
associated to the sub-policy is satisfied or it suffers an external
interruption. In our case, past policies provide a bias, and the
learning agents interlace the execution of actions suggested
by the new and past policies probabilistically. Policy Reuse
never executes complete, nor even partial policies, butin each
step decides whether to execute an action suggested by one
of the past or new policies. This fact avoids the definition of
both the conditions when a sub-policy must be executed, nor

the conditions when the execution of a sub-policy must be
interrupted.

A primary difference of Policy Reuse and using macro-
actions, assuming flat macro-actions similar to the explora-
tory actions used in Policy Reuse, is that Policy Reuse does
not learn values for such exploratory actions, but it learns val-
ues for the primitive actions. From the values of the primitive
actions, the ground policy is derived.

A main contribution of Policy Reuse with respect to other
previous approaches is that Policy Reuse does not assume that
transferred knowledge is positive. This assumption makes
other methods to believe that the transferred knowledge will
be useful, as itis highlighted in a previous survey [42]. Policy
Reuse owns mechanisms to measure the utility of the trans-
ferred policies, and capabilities to decide when to reuse them
or not.

3 Policy Reuse in reinforcement learning

Reinforcement Learning problems are typically formalized
using Markov Decision Processes (MDPs). An MDP is a
tuple (S, A, 7, R), where S is the set of states, A is the set
of actions, 7 is a stochastic state transition function, 7 :
SxAxS — R, and R is a stochastic reward function,
R :S x A— N RL assumes that 7 and R are unknown.
We focus on RL domains where different rasks can be
solved. The MDP’s formalism is not expressive enough
to represent all the concepts involved in knowledge trans-
fer [43], so we define domain and task separately to handle
different tasks executed in the same domain. We introduce a
task as a specific reward function, while the other concepts,
S, Aand 7 stay constant for all the tasks in the same domain.

Definition 1 A Domain D is a tuple (S, A, 7), where S is
the set of all states; A is the set of all actions; and 7 is a state
transition function, 7 : S x A x S — R.

Definition 2 A task 2 is a tuple (D, Rq), where D is a
domain; and R is the reward function, R : S x A — N.

We assume that we are solving episodic tasks. A trial or
episode starts by locating the learning agent in a random posi-
tion in the environment. Each episode finishes when the agent
reaches a goal state or when it executes a maximum number
of steps, H.' The agent’s goal is to maximize the expected
average reinforcement per episode, W, as defined in Eq. 1:

1 K H X
W= v M

k=0 h=0

1 Constraining Policy Reuse to episodic tasks or to limit the number
of steps of an episode, are a relaxation but not a requirement to apply
Policy Reuse, which has demonstrated to perform accurately in domains
with undefined length of the episodes [44].

@ Springer

16

Prog Artif Intell (2013) 2:13-27

where y (0 < y < 1) reduces the importance of future
rewards, and ry ; defines the immediate reward obtained in
the step & of the episode k, in a total of K episodes.

An action policy, I, is a function IT : S — A that defines
how the agent behaves. If the action policy was created to
solve a defined task, €2, we call that action policy Ilg. The
gain, or average expected reward, received when executing
an action policy IT in the task €2 is called WSI;I. Finally, an
optimal action policy for solving the task €2 is called ITg,. The
action policy IT§, is optimal if Wg 2 > Wg, for all policy IT
in the space of all possible policies when K — 00. Action
policies can be represented using the action-value function,
Qn(s, a), which defines for each state s € S, a € A, the
expected reward that will be obtained if the agent starts to act
from s, executing a, and after it follows the policy IT. So, the
RL problem is mapped to learning the function Q' (s, @) that
maximizes the expected gain. The learning can be performed
using different algorithms, such as Q-Learning [3].

The goal of Policy Reuse is to use different policies, which
solve different tasks, to bias the exploration process of the
learning of the action policy of another similar task in the
same domain. We call Policy Library to the set of past poli-
cies, as defined next.

Definition 3 A Policy Library, L, is a set of n policies
{ITy, ..., I1,}. Each policy I1; € L solves a task ; =
(D, Rg;), 1.e., each policy solves a task in the same domain.

The previous definition does not restrict the characteristics
of the tasks (they may be repeated), nor the characteristics of
the policies (they may be sub-optimal),although optimality
or near-optimality could affect the reuse process. The scope
of Policy Reuse is summarized as: we want to solve the task
Q,i.e., learn H’S“z; we have previously solved the set of tasks
{21, ..., Q,} with n policies stored as a Policy Library, L =
{ITy, ..., I1,}; how can we use the policy library, L, to learn
the new policy, IT§?

Policy Reuse answers this question by adding the past
policies into a learning episode as a probabilistic exploration
bias. We define an exploration strategy able to bias the explo-
ration process toward the policies of the Policy Library, and
a method to estimate the utility of reusing each of them and
to decide whether to reuse them or not. Furthermore, Policy
Reuse provides an efficient method to construct the Policy
Library. We now detail the Policy Reuse approach.

4 Reusing past policies

In this section, we describe the basic algorithms of Policy
Reuse. We first describe how to reuse just one past policy.
Then, we show how to reuse a set of past policies. Finally,
in this section, we describe in depth the results obtained in a
grid navigation domain.

@ Springer

4.1 The m-reuse exploration strategy

The m-reuse strategy is an exploration strategy able to bias
a new learning process with a past policy. Let ITp, be the
past policy to reuse and [Ty the new policy to be learned.
We assume that we are using a direct RL method to learn
the action policy, so we are learning the related Q function.
Any RL algorithm can be used to learn the Q function, and
Sarsa(A) and Q(A) have been applied [13, 14].

The goal of m-reuse is to balance random exploration,
exploitation of the past policy, and exploitation of the new
policy, as represented in Eq. 2.
o= IMpast (s) w/prob.r @

€ — greedy(IThew(s)) w/prob.(1 —)
The 7 -reuse strategy follows the past policy with probability
Y, and it exploits the new policy with probability of 1 — .
As random exploration is always required, it follows the new
policy using an e-greedy strategy.

Table 1 shows a procedure describing the w-reuse strat-
egy integrated with the Q-Learning algorithm. The procedure
gets as an input the past policy ITpast, the number of episodes
K, the maximum number of steps per episode H, and the ¥
parameter. An additional v parameter is added to decay the
value of ¢ in each step of the learning episode. The proce-
dure outputs the Q function, the policy, and the average gain
obtained in the execution, W, which will play an important
role in similarity assessment, as the next sections present.
The variable 1y, keeps the value of v” v in each step of each
episode.

4.2 A similarity function between policies

The exploration strategy m-reuse, as defined in Table 1,
returns the learned policy Ilpew, and the average gain
obtained in its learning process, W. Let W; be the gain
obtained while executing the m-reuse exploration strategy,
reusing the past policy IT;, and using a parameter vector
that encapsulates all the parameters of the exploration strat-
egy (K, H, ¢ and v, defined in Table 1). We can use such
value to measure the usefulness of reusing the policy I1; to
learn the new policy Ilyey. The next definitions formalize
this idea.

Definition 4 Given a policy IT; that solves a task Q; =
(D, R;), and a new task 2 = (D, Rq), the Reuse Gain of
the policy IT; on the task €2, Wl.a, is the gain obtained when
applying the m-reuse exploration strategy with the policy IT;
and a parameter vector @ to learn the policy IT.

Vector 0 plays an important role, since the reuse gain obtained
when reusing a policy depends on such a vector. However,
we can assume that such parameter vector must be fixed “a
priory” or after some tuning. Therefore, in the rest of the

Prog Artif Intell (2013) 2:13-27

Table 1 m-reuse exploration

m-reuse (Ipast, K, H, ¢, v).

strategy

Initialize Qnew (s,a) =0, Vs € S,a € A

For k=0to K —1

Set the initial state, s, randomly.
Set 1 «—
forh=1to H
With a probability of ¥y, a = Ipast(s)
With a probability of 1 — ¢y, a = e-greedy(IInew(s))

Receive the next state s’, and reward, ry

Update Qnew (s,a), and therefore, Iy eq:

QMnew (5,a) — (1 - a)Q(s,a)Tnew +

alr +ymaxg QMnew (s, a)]

Set Yp1 «— Ypv

Set s « s’

1 K H h
W= %3 k0 Dm0 Tk.h
Return W, Qnew (s,a) and ITnew

paper we will assume that such vector is fixed. To simplify
the notation, we will also eliminate it from the formulation,
and we will use W;, instead of Wie.

Then, given a parameter vector @, the most useful policy
to reuse, I, from a Library Policy, L = {I1y, ..., I}, is
the one that maximizes the Reuse Gain when learning such
a task, as defined in Eq. 3:

[Ty = argpy, max(W;), i=1,...,n 3)

To solve this equation, we need to compute the Reuse
Gain for all the past policies. Interestingly, such a gain can
be estimated on-line at the same time that the new policy
is computed. This idea is formalized in the PRQ-Learning
algorithm.

4.3 The PRQ-learning algorithm

The goal of the PRQ-learning algorithm is to solve a task
Q, i.e., to learn an action policy Ilg. We have a Policy
Library L = {I1y, ..., I[1,} composed of n past optimal poli-
cies that solve n different tasks, respectively. Then two main
questions need to be answered: (i) given the set of policies
{Ilq, Iy, ..., I1,}, which consists of the policies in the Pol-
icy Library plus the ongoing learned policy, what policy (say
ITy) is exploited? (ii) once a policy is selected, what explo-
ration/exploitation strategy is followed?

The answer to the first question is as follows: let W; be the
Reuse Gain of the policy I1; on the task 2. Also, let Wg be
the average reward that is received when following the policy
Mg, greedily. The solution we introduce consists of following
a softmax strategy using the values Wq and W;, as defined
in Eq. 4, with a temperature parameter t. This value is also

computed for ITp, which we assume to be I1g. Equation 4
provides a way of deciding, 7, to select to exploit.

Iy = argn; < j<n Max P(IT;), where P(II;)

eTWj
:W7 VIT;,0<j<n 4)
p:

The problem of selecting what policy to reuse in the PRQ-
Learning is similar to a non-stationary k-armed bandit prob-
lem. Most works in non-stationary k-armed bandit problems
try to detect when the change in the distributions occurs, and
then to re-learn with classical stationary approaches [45].

The answer to the second question (what exploration strat-
egy to follow once a policy is chosen) is an heuristic that
depends on the selected policy. If the policy chosen is g,
the algorithm follows a completely greedy strategy. However,
if the policy chosen is I1; (fori = 1,...,n), the m-reuse
action selection strategy, defined in previous section, is fol-
lowed instead. In this way, the Reuse Gain of each of the past
policies can be estimated on-line with the learning of the new
policy. Thus, the values required in Eq. 4 are continuously
updated each time a policy is used.

All these ideas are formalized in the PRQ-Learning algo-
rithm (Policy Reuse in Q-Learning) shown in Table 2. The
algorithm gets as input: a new task to solve €2; the policy
library L; the temperature parameter of the softmax policy
selection equation 7, and a decay parameter At; and a set of
previously defined parameters: K, H, ¥, v, y, «.

The algorithm initializes the new Q function to 0, as well
as the estimated reuse gain of the policies in the library.
Then the algorithm executes the K episodes iteratively. In
each episode, the algorithm decides which policy to follow.

@ Springer

18

Prog Artif Intell (2013) 2:13-27

PRQ-Learning($2, L, 7, A1, K, H, 1, v,7v, &)

Table 2 PRQ-Learning o
- wven:

1. A new task {2 we want to solve

2. A Policy Library L = {II1,..

S I}

3. An initial value of the temperature parameter, 7, and an incremental size, A, for

the Boltzmann policy selection strategy

IS

A maximum number of episodes to execute, K
A maximum number of steps per episode, H

The parameters ¢ and v for the m-exploration strategy

7. The parameters v and « for the Q-learning update equation

— Initialize:

1. Qu(s,a)=0,VseS,ae A

. Initialize W, to O
. Initialize W; to 0

2
3
4. Initialize the number of episodes where policy I, has been chosen, U, = 0
5

. Initialize the number of episodes where policy I1; has been chosen, U; = 0,Vi =

1,...,n

— For k=1 to K do

— Choose an action policy, ITj, assigning to each policy the probability of being se-

lected computed by the following equation (equation 4):

6'r'Wj

P(Ilj) = <=

szo e‘er

where Wy is set to W, and 0 < j < n

1T, = argy; o< j<n max P(II))

— Execute the learning episode k

o If IT, = Iy, execute a Q-Learning episode following a fully greedy strategy

e Otherwise, use the m-reuse exploration strategy to reuse I, i.e., call m-

reuse([lg, 1, H, ¢, v)

e In any case, receive the reward obtained in that episode, say R, and the updated

Q function, Q (s, a)

WieU+R
— Set Wy, = 75ki1

— Set U, = U + 1
— Set T =714 AT

— Return the policy derived from Qg (s, a)

In the first iteration, all the policies have the same proba-
bility to be chosen, given that all W; values are initialized
to 0. Once a policy is chosen, the algorithm uses it to solve
the task, updating the Reuse Gain for such a policy with
the reward obtained in the episode, and therefore, updat-
ing the probability to follow each policy. The policy being
learned can also be chosen, although in the initial steps it
behaves as a random policy, given that the Q values are
initialized to 0. While new updates are performed over the
Q function, it becomes more accurate, and receives higher

@ Springer

rewards when executed. After executing several episodes,
it is expected that the new policy obtains higher gains
than reusing the past policies, so it will be chosen most
of the time.

5 Building a library of policies

This section describes the P L P R algorithm (Policy Library
through Policy Reuse), an algorithm to build a library of

Prog Artif Intell (2013) 2:13-27

19

policies. The algorithm is based on an incremental learn-
ing of policies that solve different tasks. Notice that we are
assuming that the tasks that the algorithm will be asked to
solve are unknown a priory, and are given in a sequential
way. Otherwise, a method to learn them in parallel could be
applied [46].

5.1 The PLPR algorithm

The algorithm works as follows. Initially, the Policy Library
is empty, PL = @. Then, the first task, say €2;, needs to
be solved, so the first policy, say ITj, is learned. To learn
the first policy, any exploration strategy could be used but
the policy reuse strategy m-reuse, given that there is not any
available policy to reuse. I1; is added to the Policy Library,
so PL = {IT;}. When a second task needs to be solved, the
PRQ-Learning algorithm is applied, reusing I1;. Thus, IT; is
learned. Then, we need to decide whether to add I, to the
Policy Library or not. This decision is based on how similar
IT; is to Iy, following the Eq. 5. In the equation, W5 is
the average gain obtained when following IT, greedily, and
W) is the Reuse Gain of I1; on task €2,. Both values are
computed in the execution of the PRQ-Learning algorithm,
so no additional computations are required.

d_, (ITy, Ip) = W — W, (5)

This distance metric estimates how similar IT; is to IT,.
We define this distance not by direct comparisons between
the policies, but comparing the result of applying them. In our
case, if 1 is very similar to Iy, i.e., d—, (I1y, 1) is close to
0, to include the second policy in the library is unnecessary.
However, if the distance is large, I, is included. Therefore,
we can introduce a new concept, §-similarity, as follows.

Definition 5 Given a policy, I1; that solves a task ©; =
(D, R;), anew task Q = (D, Rq), and its respective optimal
policy, IT. I is §-similar to T1; (for0 < § <)it W; > (SWE‘Z,
where W; is the Reuse Gain of IT; on task Q and W§ is
the average gain obtained in 2 when an optimal policy is
followed.

The interesting property of this concept is that for any
optimal policy IT, if we know a past policy which is §-similar
to it, we know that such optimal policy can be easily learned
just by applying the m-reuse algorithm with the past policy,
and that the gain obtained in the learning process (the reuse
gain) will be at least § times the maximum gain in such a
task. From this definition, we can formalize the concept of
8-similarity with respect to a Policy Library, L, as follows.

Definition 6 Given a Policy Library, L = {I1y, ..., I1,} in
a domain D, a new task Q2 = (D, Rg), and its respective
optimal policy, IT. IT is § -similar with respect to L iff 3IT;
such as IT is §-similar to I1;, fori =1, ..., n.

Thus, if we know that a policy IT is §-similar with respect
to a Policy Library L, we know that the policy IT can be
easily learned by reusing the policies in L.

The PLPR algorithm is described in Table 3. It is executed
each time that a new task needs to be solved. It inputs the
Policy Library and the new task to solve, and outputs the
learned policy and the updated Policy Library.

Equation (6) is the update equation for the Policy Library,
derived from Eq. 5. It requires the computation of the
most similar policy, which is the policy IT; such as j =
arg; max W;, fori = 1, ..., n. The gain that will be obtained
by reusing such a policy is called Wy,x. The new policy
learned is inserted in the library if Wy, is lower than §
times the gain obtained by using the new policy (Wg), where
8 € [0, 1] defines the similarity threshold, i.e., whether the
new policy is §-similar with respect to the Policy Library.

Table 3 PLPR Algorithm

PLPR Algorithm

— Given:

1. A Policy Library, L, composed of n policies, {I11, ...

A}

2. A new task 2 we want to solve

3. A 0 parameter

— Execute the PRQ-Learning algorithm, using L as the set of past policies. Receive

from this execution [T, W and Winaz, where:

— Il is the learned policy

— Wy, is the average gain obtained when the policy I, was followed

— Wmaz = maxW;, fori=1,...,n

— Update PL using the following equation:

LU {Il if Winaz < OW,
L—{ e} i ° (©)

L otherwise

@ Springer

20

Prog Artif Intell (2013) 2:13-27

The parameter § has an important role. If it receives a value
of 0, the Policy Library stores only the first policy learned,
given that the average gain obtained by reusing it will be
greater than zero in most cases, due to the positive rewards
obtained by chance. If § = 1, most of the policies learned are
inserted, due to the fact that Wp,x < Wgq, given that Wgq is
maximum if the optimal policy has been learned. Different
values in the range (0, 1) provide different sizes of the library,
as will be demonstrated in the experiments. Thus, § defines
the size, and therefore the resolution, of the library.

5.2 Suboptimality of policy reuse

The PLPR algorithm has an interesting “side-effect,” namely
the learning of the structure of the domain. As the Policy
Library is initially empty, and a new policy is included only
if it is different enough with respect to the previously stored
ones, depending on the threshold §, when the policies stored
are sufficiently representative of the domain, no more policies
are stored. Thus, the obtained library can be considered as
the Basis-Library of the domain, and the stored policies can
be considered as the core policies of such domain. In the
following, we introduce the formalization of these concepts.

Definition 7 A Policy Library, L = {I1y,...,IlI,} in a
domain D with a distribution of tasks 7', is a §-Basis-Library
of the domain D iff: (i) AIl; € L, such as Il; is §-similar
with respect to L — IT;; and (ii) the rest of policies IT in
the space of all the possible policies in D are §-similar with
respect to L.

Here, we introduce the idea of a distribution of tasks, 7, to
limit the distribution of rewards functions. This distribution
will be important when we define the conditions to build a
8-Basis-Library of a domain.

Definition 8 Given a §-Basis-Library, L = {I1y, ..., I1,}
in a domain D, a new task Q2 = (D, Rq), each policy I1 € L
is a §-Core Policy of the domain D in L.

The proper computation of the Reuse Gain for each past
policy in the PRQ-Learning algorithm plays an important
role, since it allows the algorithm to compute the most similar
policy, its reuse distance and therefore, to decide whether to
add the new policy to the Policy Library or not. If the reuse
gain is not correctly computed, the basis library will not be
either. Thus, we introduce a new concept that measures how
accurate the estimation of the reuse gain is.

Definition 9 Given a Policy Library, L = {I1y, ..., I1,} in
a domain D, and a new task 2 = (D, Rq), let us assume that
the PRQ-Learning algorithm is executed, and it outputs the
new policy I1gq, the estimation of the optimal gain WHQ, and
the estimation of the Reuse Gain of the most similar policy,
say Wmax. We say that the PRQ-Learning algorithm has been

@ Springer

Properly Executed with a confidence factor n (0 < n < 1),
if TIg is optimal to solve the task €2, and the error in the
estimation of both parameters is lower than a factor of 7,
1.e.:

vilmax > nWmax and U,Wmax < Whmax and %)
Wng > nWn, and nWpg < Wnq,

where Whax is the actual value of the Reuse Gain of the most
similar policy and Wr, is the actual gain of the obtained
policy.

Thus, if we say that the PRQ-Learning algorithm has been
Properly Executed with a confidence of 0.95, we can say,
for instance, that the estimated Reuse Gain, Wmax of the
most similar policy, has a maximum deviation over the actual
Reuse Gain of 5 %. The proper execution of the algorithm
depends on how accurate the parameters selection is. Such a
parameter selection depends on the domain and the task, so no
general guidelines can be provided. The definition requires
that that ITg is optimal to solve the task €2, which theo-
retically may require an infinite number of episodes. How-
ever, in practice, optimal policies may be obtained in a finite
number of episodes or, at least, the suboptimality could be
bounded.

The previous definition allows us to enumerate the condi-
tions that make the PLPR algorithm build a §-Basis-Library,
as described in the following theorem.

Theorem 1 The PLPR algorithm builds a 5-Basis-Library of
a domain D for a task distribution T if (i) the PRQ-Learning
algorithm is Properly Executed with a confidence of 1, (ii) the
Reuse Distance is symmetric; and (iii) the PLPR algorithm
is executed infinite times over random tasks in the distribu-
tion T.

Proof The proper execution of the PRQ-Learning algorithm
ensures that the similarity metric, and all the derived con-
cepts, are correctly computed. The first condition of the defi-
nition of §-Basis-Library can be demonstrated by induction.
The base case is when the library is composed of only one pol-
icy, given that no policy is §-similar with respect to an empty
library. The inductive hypothesis states that a Policy Library
L, ={Iy,...,I1,} is a §-Basis-Library. Lastly, the induc-
tive step is that the library L, = {I1y,..., I, 1,41}
is also a §-Basis-Library. If the PLPR algorithm has been
followed to insert I1,+1 in L, we ensure that I, is not
8-similar with respect to L, given this is the condition to insert
a new policy in the library, as described in the PLPR algo-
rithm. Furthermore, IT; (fori = 1,...,n) is not §-similar
with respect to L, 41 — I1;, given that (i) I1; is not §-similar
with respect to L, — I1; (for inductive hypothesis); and (ii)
[1; is not §-similar to I, because the reuse distance is
symmetric (by second condition of the theorem), and that
ensures that if IT; is not §-similar to IT,41, then IT, is not
8-similar to IT; . Finally, the second condition of the definition

Prog Artif Intell (2013) 2:13-27

21

of §-Basis Library becomes true if the algorithm is executed
infinite times, which is satisfied by the third condition of the
theorem, which also constrain the distribution of tasks for
which policies are computed.

The achievement of the conditions of the theorem depends
on several factors. The symmetry of the Reuse Distance
depends on the task and the domain. The proper execution
of the PRQ-Learning algorithm also depends on the selec-
tion of the correct parameters for each domain. However,
although the previous theorem requires the PRQ-Learning
algorithm to be properly executed with a confidence of 1, a
generalized result can be easily derived when the confidence
is under 1, say 7, as the following theorem claims. O

Theorem 2 The PLPR algorithm builds a (2n8)-Basis-
Library if (i) the PRQ-Learning algorithm is Properly
Executed with a confidence of n; (ii) the Reuse Distance is
symmetric; and (iii) the PLPR algorithm is executed infinite
times over random tasks.

Proof The proof of this theorem only requires a small con-
sideration over the inductive step of the proof of the previous
theorem, where a policy I1,,4 is inserted in the §-Core Pol-
icy L, = {I1y, ..., I1,} following the PLPR algorithm. The
policy is added only if it is not 6-similar with respect to L. In
that case, if the PRQ-Learning algorithm has been properly
executed with a confidence of 7, we can only ensure that the
policy IT,,4+1 is not (2n§)-similar with respect to L,,, because
of the error in the estimation of the gains (reuse gain and opti-
mal gain) in the execution of the PRQ-Learning algorithm.
Finally, we define a lower bound of the learning gain that
is obtained when reusing a §-Basis-Library to solve a new
task. O

Theorem 3 Given a §-Basis-Library, L = {I1y, ..., I1,} of
a domain D, and a new task Q = (D, Rq). The average
gain obtained, say Wq, when learning a new policy Tlg to
solve the task Q2 by properly executing the PRQ-Learning
algorithm over Q reusing L with a confidence factor of n is
at least né times the optimal gain for such a task, W, i.e.,

Wa > ndWg 8)

Proof When executing the PRQ-Learning properly, we reuse
all the past policies, obtaining an estimation of their reuse
gain. In the definition of Proper Execution of the PRQ-
Learning algorithm, the gain generated by the most similar
task, say IT;, was called Wmax, which is an estimation of the
real one. In the worst case, the gain obtained in the execution
of the PRQ-Learning algorithm is generated only by the most
similar policy, I1;, and the gain obtained by reusing any other
different policy is 0, i.e., W; = 0, VI1; # I1;. By the defin-
ition of §-Basis-Library we know that every policy IT in the
domain D is not §-similar with respect to L. Thus, the most

similar policy in L, I1; is such that its Reuse Gain, W« sat-
isfies Wiax > W, (by definition of §-similarity). However,
given that we have executed the PRQ-Learning algorithm
with a confidence factor of 1, the obtained gain Wg, only sat-
isfies that W > nWnax by definition of proper execution
of the PRQ-Learning algorithm. Thus, Wg > nWpay, and
Winax > WS, so Wo > ndW§. m]

6 Empirical results

We use a grid-based robot navigational domain (see Fig. 1)
with multiple rooms. The environment is represented by
walls, free positions and goal areas, all of them of size 1 x 1.
The whole domainis N x M (24 x 21 in our case). The actions
that the robot can execute are “North,” “East,” “South,” and
“West”, all of size one. The final position after executing an
action is modified by adding a random value that follows a
uniform distribution in the range (—0.20, 0.20).

‘Walls block the robot’s motion, i.e., when the robot tries
to execute an action that would crash it into a wall, the action
keeps the robot in its original position.

The robot knows its location in the space through contin-
uous coordinates (x, y). We assume that we have the optimal
uniform discretization of the state space (which consists of
24 x 21 regions).” The goal in this domain is to reach the
area marked with ‘G’, in a maximum of H actions. When the
robot reaches it, it is considered a successful episode, and it
receives a reward of 1. Otherwise, it receives a reward of 0.

Figure 1 shows six different tasks, Q, 2, 23, Q4, Q5
and €2, given that the goal states, and therefore, the reward
functions, are different. All these tasks are used in the exper-
iments described in the next sections.

We choose the robot navigation domain for experimen-
tation because it has been widely used in transfer learn-
ing papers (e.g., [25,38,43]) and provides us an empirical
demonstration of the theoretical results. Policy Reuse has
also been succesfully applied in more complex domains, as
the Keepaway task in robot soccer, which requires: (i) a map-
ping between tasks that use different state and action spaces;
and (ii) function approximation methods since the state space
is continuous [14,44].

The learning process has been first executed following
different exploration strategies that do not use any past pol-
icy. Specifically, we have used four different strategies: (i)
random; (ii) completely greedy; (iii) an e-greedy (i.e., with
probability € follows the greedy strategy, and with probability
(1—¢€) actsrandomly), with an initial value of € = 0, whichis

2 Different methods for function approximation have been successfully
applied on this domain [47]. We have simplified the state space repre-
sentation to a uniform discretization to focus on the study of Policy
Reuse.

@ Springer

22

Prog Artif Intell (2013) 2:13-27

Fig. 1 Grid-based office

domain
(a) Task 21
(d) Task £24
0.25
0.2 B
0.15 -

0.05

ot
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Episodes

Random —— 1—greedy -- e—greedy----- Boltzmann -

Fig. 2 Results of the learning process for different exploration strate-
gies that learn from scratch

incremented by 0.0005 in each episode; (iv) the Boltzmann
er O(s.a j)

increasing it by 5 in each learning episode.

Figure 2 shows the results. Each learning process have
been executed 10 times, the average value is shown and
error bars show standard deviations. When acting randomly,
the average gain in learning is almost 0, given that act-
ing randomly is a very poor strategy. However when a
greedy behavior is introduced, (strategy 1-greedy), the curve
shows a slow increment, achieving values of almost 0.1. The
curve obtained by the Boltzmann strategy does not offer
significant improvements. The e-greedy strategy seems to
compute an accurate policy in the initial episodes, and it
corresponds to the highest average gain at the end of the
learning.

strategy (P(a;) =), initializing T = 0, and

@ Springer

(b) Task 2 (c) Task 23

(e) Task 25 (f) Task (2

0.8 b
172}
(5}
E 06 i
=
i
c 04 bl
—
~

0.2 i

oL

0 10 20 30 40 50 60 70 80 90 100

Steps
Exploit past policy Act randomly - - - -. Exploit new policy

Fig. 3 Evolution of the probabilities of exploring and exploiting in an
episode for the m-reuse exploration strategy

6.1 Parameter setting

In the 7 -reuse exploration strategy, there are three probabili-
ties involved: the probability of exploiting the past policy, i.e.,
Y, the probability of using the current policy, i.e., € (1 —),
and the probability of acting randomly, i.e., (1 —€)(1 — ¥rp).
These probabilities are shown in Fig. 3, for input values of
H =100, 4% =1and v = 0.95.

With this parameter setting, the exploration is biased with
the past policy mainly in the initial steps of the episode.
Assigning to € the value of (1 — ;) makes the strategy
very greedy in the final steps of each episode, given that
we assume that the last steps are the ones that are learned
faster (since rewards are also propagated fast from the goal).
The figure shows that in the initial steps of each episode, the
past policy is exploited. As the number of steps increases,

Prog Artif Intell (2013) 2:13-27

23

the probabilities of exploiting the new policy and acting ran-
domly increases. In the final steps of the episode, only the new
policy is exploited. The transition from exploiting the past
policy and exploiting the new one depends on the v parame-
ter. If this parameter is low, the transition occurs in the initial
steps, while if it is high, the transition is delayed. This para-
meter setting should be tuned for each domain, in a similar
way with the parameters of any other exploration strategy.

In the PRQ-Learning algorithms, the € parameter is set
to 1 — ¥, in each step. The rest of parameters t = 0, and
At = 0.05, that depends on the number of episodes that
we can execute, were obtained empirically after an informal
evaluation. Extended analysis on how to set the transfer rate
has been performed by different authors [48].

6.2 Computing the Reuse Gain with PRQ-learning

We use the PRQ-Learning algorithm for learning the task
2, defined in Fig. 1f. We assume that we have three different
libraries of policies, so we distinguish three different cases. In
the first one, the policy library is L1 = {I1,, I13, I14}, assum-
ing that the tasks 25, Q23 and €24, defined in Fig. 1b, c and d,
respectively, were previously solved. All these tasks are very
different from the one we want to solve, so their policies are
not supposed to be very useful in learning the new one. In the
second case, IT; is added, so L, = {I1y, I1y, 13, [14}. The
third case uses the Policy Library L3 = {I1», I13, 14, [15}.
The PRQ-Learning algorithm is executed for the three cases.
The learning curves are shown in Fig. 4.

Figure 4 shows two main conclusions. First, when a very
similar policy is included in the set of policies to be reused,
the improvement on learning is very high. For instance, when
reusing IT; and Ils, the average gain is greater than 0.1 in
only 500 iterations, and more than 0.25 at the end of the
episode. Secondly, when no similar policy is available, the

0.3 T T T

0.25

0.1 x T el
005 | %}]
0 ‘\" - 1 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

Learning from Il,, I, I, —— Learning from I, ,IT,, Ik, T, -~

Learning from TT,, Ik, TTy, 5 ----

Fig. 4 Learning curve when learning the task of Fig. 1f reusing differ-
ent sets of policies

learning curve is similar to the results obtained when learning
from scratch with the 1-greedy strategy, as shown in Fig. 2.
Interestingly, that is the strategy followed by PRQ-Learning
for the new policy, as defined by the PRQ-Learning algo-
rithm. This demonstrates that the PRQ-learning algorithm
has discovered that reusing the past policies is not useful, so
it follows the best strategy available, which is to the 1-greedy
strategy with the new policy.

The process of learning the most similar policy is illus-
trated in Fig. 5, which reports about the learning process
when reusing the Policy Library L3 = {I1s, Iy, 13, I14}.
Figure 5a shows the evolution of the Reuse Gain computed
for each policy involved, Ws, W», W3, W4, and the gain Wy,.
On the x axis, the number of episodes is shown, while the
y axis shows the gains. Initially, the Reuse Gain of all the
policies is set to 0. After a few episodes, W», W3 and Wy sta-
bilize below 0.05. However, W5 increases up to 0.15. These
values demonstrate that the most similar policy (ITs) is cor-
rectly computed. The gain of the new policy, Wgq, starts to
increase around iteration 100, achieving a value higher than
0.3 by iteration 500, demonstrating that the new policy is
very accurate.

The values of the Reuse Gain computed for each policy
are used to compute the probability of selecting them in each
iteration of the learning process, using the formula introduced
in Eq. 4, and the parameters introduced above (initial T = 0,
and At = 0.05). Figure 5b shows the evolution of these
probabilities. In the initial steps, all the past policies have the
same probability of being chosen (0.2) given that the gain of
all them is initialized to 0. While the gain values are updated,
the probability of 15 grows. For the other past policies, the
probability decreases down to 0. The probability of the new
policy also increases, and after 400 iterations, its bigger than
the rest. After a few iterations more, it achieves the value of
1, given that its gain is the highest, as shown in Fig. 5a.

Figure 5b demonstrates how the balance between exploit-
ing the past policies or the new one is achieved. It shows how
in the initial episodes, the algorithm chooses to reuse the past
policies to find the most similar. Then, it reuses the most sim-
ilar policy until the new policy is leaned and improves the
result of reusing any past policy.

In summary, we can say that the PRQ-learning algorithm
has demonstrated to successfully reuse a predefined set of
policies, and how it can compute the reuse gain for each of the
past policies. The remaining issue consists of demonstrating
how the reuse gain is successfully used to build a library of
policies and to learn the domain structure.

6.3 Learning the structure of the domain
In this experiment, we want to evaluate the PLPR algo-

rithm. With this purpose, we try to learn the action policies
for different tasks in the navigation domain. Performing a

@ Springer

24

Prog Artif Intell (2013) 2:13-27

]
i Ij\rJ-f
I N 1 L B L

0 1o 1 | | I R
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Episode
W, — w, - W, W, wa - -

(a) Evolution of W;

Fig. 5 Evolution of W; and P (I1;)

Fig. 6 Navigation domain

task consists of trying to solve it K = 2,000 times. Each
of these times is called an episode. Each episode consists
of a sequence of actions until the goal is achieved or until
the maximum number of actions, H = 100, is executed.
Notice that there is no separation between learning and test,
so the correct balance between exploration and exploita-
tion must be achieved to maximize the average gain in each
performance.

In this domain, the task distribution is represented by 50
different tasks, each of them with a different reward function.
The different reward functions are derived from goal states
located in different positions of the different rooms of the
domain, as shown in Fig. 6. Notice that the figure does not
represent a unique task with 50 different goals, but the 50
different goal areas of the 50 different tasks.

@ Springer

0.8 - / B
II/
> {
E o6t / N
) o
< |
S '
& 04 e . B
0 1 L | 1 1 L 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Episode
P(IL) — P(IL) P(IL,) -~ P(IL,) - P - — -
(b) Evolution of P(I1;)
50
45 - {
40 - é’ ’%
8 T AT F i
2 30p 5t]
= :
a 25+ ~% E
] x JU SRR
g 20 - /v./—fg —___%, % % i
© sk r"/ﬁ,_@""% .
P S 2o TR I 1
10+ P R B
Pt R
5k XV.A-{T}Q} 4
o = + + + + + + + + 3
5 10 15 20 25 30 35 40 45 50
Tasks
=0 —— 0=0.50----. 6=1--. §=025 $=0.75

Fig. 7 Number of core-policies obtained

The results provided are the average of 10 different exe-
cutions, in which the 50 different tasks are sequentially per-
formed following a random order.

In these experiments, we use the same parameter setting
than in previous experiments; for the Q-Learning algorithm,
y = 0.95 and o = 0.05; for the m-epsilon exploration strat-
egy, ¥ = 1, v = 0.05, and € is set to 1 — 1, in each step.
In the PRQ-Learning algorithm, 7 is initially set to 0, and is
increased by 0.05 after each trial.

The first element to study is the size of the Policy Library
built while performing the tasks with the PLPR algorithm,
i.e., the number of core-policies stored in the Policy Library,
shown in Fig. 7. The figure shows in the y axis the size of
the Policy Library, and in the x axis, the number of tasks
performed up to that moment. As introduced above, when
8 = 0, only 1 policy is stored. When § = 0.25, the number
of core-policies is around 14. Interestingly, this is very close
to the number of rooms in the domain (15). While increasing
8, the number of core-policies increases and when § = 1,
almost all the learned policies are stored.

Prog Artif Intell (2013) 2:13-27

25

Fig. 8 Core-Policies (8 = 0.25)

Figure 8 shows an example of the core-policies obtained
in one execution, with § = 0.25. The figure represents the
Policy Library obtained after performing the 50 tasks which,
as defined above, is composed of 14 core-policies. In the
figure, we assume that a policy is represented by the goal area
of the task that it solves. An core-policy is represented also by
the goal area, but in this case, the area is shaded. The figure
demonstrates that for most of the rooms, one and only one
core-policy has been learned. The algorithm has discovered
that if two different tasks are given two goal areas in the same
room, their respective policies are very similar, so only one
of them needs to be stored in the Policy Library. That allows
us to say that the structure of the domain has been learned by
the PLPR algorithm, and is represented by the core-policies.

Figure 9a shows the average gain obtained when per-
forming the 50 different tasks with the PLPR algorithm,

0.25 T T T T T T T
T oaTT LT st
e s e~ A e
T AL i e Ted

T

T
o el gy :
2F - o L e
0 7‘-.—*‘3%‘%“’*“4%1 1.
B Tt

0.15 | gt

= 3
8 Pl
0.1 L .
0.05 - R
0 1 1 1 1 1 1 1 1 1
0 5 10 IS 20 25 30 35 40 45 50
Episode
80 —— 8=050 ----- 5=1 — — - =025 - 8=0.75

(a) PLPR for different values of §

Fig. 9 Results of PLPR

for the different values of §. In most of the cases, § =
0.25, 0.50, 0.75 and 1, the average gain increases up to more
than 0.2, and no significant differences exist between them.
Only in the case of § = 0, the average gain stays low, around
0.16, given that, as introduced above, § = 0 generates a Pol-
icy Library with only one policy (the first one learned). For
comparisons, the same learning process has been executed
with different exploration strategies that learn from scratch,
and summarized in Fig. 9b.

The average gain obtained while new policies are learned
stabilizes around 0.12 for all the strategies, without very sig-
nificant differences. This demonstrates that Policy Reuse can
obtain an increment of almost a 100 % gain in the perfor-
mance of the 50 tasks over the results obtained when the
50 tasks are learned from scratch. Interestingly, when § = 0,
and only one policy is stored, it also obtains improved results
over learning from scratch, due to a good behavior of the
m-reuse exploration strategy. That confirms that providing
the learning process with a bias improves the performance,
even when that bias may not be the best for all the learning
processes.

7 Conclusions

Policy Reuse is a transfer learning method that contributes to
Reinforcement Learning with three main capabilities. First,
it provides Reinforcement Learning algorithms with a mech-
anism to probabilistically bias an exploration process by
reusing a Policy Library. Our proposed Policy Reuse algo-
rithm, called PRQ-learning, improves the learning perfor-
mance over exploration strategies that learn from scratch.
Second, Policy Reuse provides an incremental method to
build the Policy Library. The library is built at the same time
that new policies are learned and past policies are reused.
And last, our method to build the Policy Library allows the

0.25

0.2 i

0.15

Gain

0.1

0.05 b
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Episode
1-greedy —— e—greedy ------ Boltzmann -----

(b) Learning from scratch

@ Springer

26

Prog Artif Intell (2013) 2:13-27

learning of the structure of the domain in terms of a set of
§-core-policies or §-Basis-Library. Reusing this set of poli-
cies ensures that a minimum gain will be obtained when
learning a new task, as demonstrated theoretically.

Policy Reuse defines a completely new way to reuse pre-
vious knowledge. It should be easy to identify policies with
classical macro (or SMDP) actions. However, the way we
reuse policies is completely different to the way macro-
actions or options are used. Let us take the case of an option.
An option is defined as a mapping between states and actions,
an applicability condition, and an end condition. The first
and second components have a direct mapping to a pol-
icy, since a policy is an state-action mapping applicable in
any situation of the domain. However, options are defined
to be executed until an end condition is satisfied, or until
the option is interrupted. Opposite to this scheme, Policy
Reuse never executes complete policies, nor even partial
ones. Instead, Policy Reuse executes individual actions sug-
gested by past policies probabilistically. Thus, past policies
are only a bias.

The worst scenario for transferring knowledge through
Policy Reuse is trying to reuse a policy library where none
of the stored policies is useful to solve the current task, i.e.,
when none of the stored policies are similar to the one is being
leaned. The evaluation with the PRQ-Learning algorithm
demonstrated that when the policy library reused included
a similar policy, that produced a higher performance when
compared with other exploration strategies, like e-greedy.
Interestingly, when the library does not include any simi-
lar policy, the algorithm does not perform worse than when
learning from scratch.

Another difference of Policy Reuse with macros/options
and hierarchical based approaches is that Policy Reuse learns
policies in the same level as past policies, while hierarchical
methods learn in different abstraction levels. Last, we would
like to point out that hierarchical methods typically require
the structure of the domain, i.e., the hierarchy of the domain,
is known a priory. We have shown that Policy Reuse learns the
structure of the domain in terms of a library of core-policies.
We believe that such core-policies could be used in the future
to support the learning of hierarchies or abstractions of the
domain.

In addition, Policy Reuse is very novel since it is able to
transfer knowledge, not only from a source task to a target
task, but from many tasks to many tasks. We have demon-
strated that a Policy Library can be incrementally built. This
property is due to the capability of Policy Reuse to decide
(i) given a set of policies, which one to reuse, and (ii) given
a new policy, whether it is useful to include it in the Policy
Library or not, so it can be reused in future tasks. These
mechanisms permit to discover when policies are useful
for solving a new task, minimizing the effects of negative
transfers.

@ Springer

Acknowledgments This research was conducted while the first
author was visiting Carnegie Mellon from the Universidad Carlos III
de Madrid, supported by a generous grant from the Spanish Ministry
of Education and Fulbright. This research was partly sponsored by the
Spanish Ministerio de Ciencia en Innovacin project number TIN2008-
06701-C03-03 and by Comunidad de Madrid-UC3M project number
CCGO08-UC3M/TIC-4141. This research was partly sponsored also by
Rockwell Scientific Co., LLC under subcontract no. B4U528968 and
by BBNT Solutions under subcontract no. 950008572. The views and
conclusions contained in this document are those of the authors only,
and should not be interpreted as representing any other entity.

References

1. Kaelbling, L.P,, Littman, M.L., Moore, A.W.: Reinforcement learn-
ing: a survey. Int. J. Artif. Intell. Res. 4, 237 (1996)

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge (1998)

3. Watkins, C.: Learning from delayed rewards. Ph.D. thesis, Cam-
bridge University, Cambridge (1989)

4. Tesauro, G.: Practical issues in temporal difference learning. Mach.
Learn. 8, 257 (1992)

5. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for
RoboCup-soccer keepaway. Adapt. Behav. 13(3) (2005)

6. Taylor, M.E., Stone, P., Liu, Y.: Inter-task action correlation for
reinforcement learning tasks. In: Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI’05) (2005)

7. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps:
a framework for temporal abstraction in reinforcement learning.
Artif. Intell. 112, 181 (1999)

8. Jonsson, A., Barto, A.: Causal graph based decomposition of fac-
tored mdps. J. Mach. Learn. Res. 7, 2259 (2006)

9. Veloso, M.M.: Planning and Learning by Analogical Reasoning.
Springer, Berlin (1994) (Revised PhD Thesis Manuscript, Carnegie
Mellon University, technical report CMU-CS-92-174)

10. Bruce, J., Veloso, M.: Real-time randomized path planning for
robot navigation. In: Proceedings of IROS-2002 Switzerland
(2002). (An earlier version of this paper appears in the Proceedings
of the RoboCup-2002 Symposium)

11. Taylor, M., Stone, P.: An introduction to intertask transfer for rein-
forcement learning. AI Magazine 32(1), (2012)

12. Fernandez, F., Veloso, M.: Policy reuse for transfer learning across
tasks with different state and action spaces. In: ICML’06 Workshop
on Structural Knowledge Transfer for, Machine Learning (2006)

13. Garcia, FJ., Veloso, M., Fernandez, F.: Reinforcement learning
in the robocup-soccer keepaway. In: Proceedings of the 12th
Conference of the Spanish Association for, Artificial Intelligence
(CAEPIA’07+TTIA) (2007)

14. Fernandez, F., Garcia, J., Veloso, M.: Probabilistic policy reuse
for inter-task transfer learning. Robot. Autonom. Syst. 58(7), 866
(2010). doi:10.1016/j.robot.2010.03.007

15. Dasgupta, P., Cheng, K., Banerjee, B.: Adaptive multi-robot
team reconfiguration using a policy-reuse reinforcement learning
approach. Advanced agent technology. In: Dechesne, F., Hattori,
H., Mors, A., Such, J., Weyns, D., Dignum, F. (eds.) Lecture Notes
in Computer Science, vol. 7068, pp. 330-345. Springer, Berlin
(2012)

16. Taylor, M.E., Suay, H.B., Chernova, S.: Integrating reinforcement
learning with human demonstrations of varying ability. In: The 10th
International Conference on Autonomous Agents and Multiagent
Systems, vol. 2, AAMAS’11, pp. 617-624. International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland
(2011). http://dl.acm.org/citation.cfm?id=2031678.2031705

http://dx.doi.org/10.1016/j.robot.2010.03.007
http://dl.acm.org/citation.cfm?id=2031678.2031705

Prog Artif Intell (2013) 2:13-27

27

17.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

da Silva, B.N., Mackworth, A.: Using spatial hints to improve pol-
icy reuse in a reinforcement learning agent. In: Proceedings of
the Autonomous Agents and Multi agent Systems, pp. 317-324
(AAMAS 2010) (2010)

. Thrun, S.: Efficient exploration in reinforcement learning. Tech.

Rep. C, I-CS-92-102, Carnegie Mellon University (1992)

Maclin, R., Shavlik, J., Torrey, L., Walker, T., Wild, E.:
Giving advice about preferred actions to reinforcement learners via
knowledge-based kernel regression. In: Proceedings of the Twen-
tieth National Conference on Artificial Intelligence (2005)

Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in
continuous spaces. In: Proceedings of the International Conference
of, Machine Learning, pp. 903-907 (2000)

Price, B., Boutilier, C.: Accelerating reinforcement learning
through implicit imitation. J. Artif. Intell. Res. 19, 569 (2003)
Carroll, J., Peterson, T., Owens, N.: Memory-guided exploration in
reinforcement learning. In: Proceedings of the Internatioanal Joint
Conference on, Neural Networks (2001)

Dixon, K., Malak, R., Khos, P.: Incorporating prior knowledge and
previously learned information into reinforcement learning agents.
Carnegie Mellon University, Institute for Complex Engineered Sys-
tems, Tech. rep. (2000)

Carroll, J., Peterson, T.: Fixed vs. dynamic sub-transfer in rein-
forcement learning. In: Proceedings of the International Confer-
ence on Machine Learning and Applications (2002)

Madden, M.G., Howley, T.: Transfer of experience between rein-
forcement learning environments with progressive difficulty. Artif.
Intell. Rev. 21, 375 (2004)

Taylor, M., Stone, P., Liu, Y.: Transfer learning via inter-task map-
pings for temporal difference learning. J. Mach. Learn. Res. 8(1),
2125 (2007)

Taylor, M.E., Stone, P.: Value functions for RL-based behavior
transfer: A comparative study. In: Proceedings of the Twenty-first
National Conference on, Artificial Intelligence (AAAI’06) (2006)
Walsh, T.J., Li, L., Littman, M.: Transferring state abstractions
between mdps. In: Proceedings of the ICML 06 Workshop on
Structural Knowledge Tranfer for, Machine Learning (2006)
Soni, V., Singh, S.: Using homomorphisms to transfer options
across continuous reinforcement learning domains. In: Proceedings
of the National Conference on Artificial Intelligence (AAAI’06)
(2006)

Uther, W.T.B.: Tree based hierarchical reinforcement learning.
Ph.D. thesis, Carnegie Mellon University (2002)

Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Relational macros
for transfer in reinforcement learning. In: Proceedings of 17th Con-
ference on Inductive Logic Programming (2007)

Sutton, R.S., Precup, D., Singh, S.: Intra-option learning about
temporally abstract actions. In: Proceedings of the Internacional
Conference on, Machine Learning (ICML’98) (1998)

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

438.

Stolle, M., Precup, D.: Learning options in reinforcement learning.
In: Proceedings of the Sth International Symposium on Abstraction,
Reformulation and Approximation, Lecture Notes In Computer
Science, vol. 2371. Springer, Berlin (2002)

Taylor, M., Stone, P.: Cross-domain transfer for reinforcement
learning. In: Proceedings of the 24th International Conference on,
Machine Learning (ICML’07) (2007)

Singh, S.P.: Transfer of learning by composing solutions of ele-
mental sequential tasks. Mach. Learn. 8 (1992)

Dietterich, T.G.: Hierarchical reinforcement learning with the
MAXQ value function decomposition. J. Artif. Intell. Res. 13, 227
(2000)

Hengst, B.: Discovering hierarchy in reinforcement learning with
HEXQ. In: Proceedings of the Nineteenth International Conference
on, Machine Learning (2002)

Thrun, S., Schwartz, A.: Finding structure in reinforcement learn-
ing. In: Advances in Neural Information Processing Systems, vol. 7.
MIT Press, Massachusetts (1995)

Simsek, O., Wolfe, A.P., Barto, A.G.: Identifying useful subgoals
in reinforcement learning by local graph partitioning. In: Proceed-
ings of the Twenty-Second International Conference on Machine
Learning (2005)

Bowling, M., Veloso, M.: Bounding the suboptimality of reusing
subproblems. In: Proceedings of IICAI-99 (1999)

Parr, R.: Flexible decomposition algorithms for weakly coupled
markov decision problems. In: Proceedings of the 14th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-98).
Morgan Kaufmann, San Francisco (1998)

Taylor, M., Stone, P.: Transfer learning for reinforcement learning
domains: A survey. J. Mach. Learn. Res. 10, 1633 (2009)
Sherstov, A.A., Stone, P.: Improving action selection in MDP’s
via knowledge transfer. In: Proceedings of the Twentieth National
Conference on, Artificial Intelligence (2005)

Fernandez, F., Veloso, M.: Reusing and building policy libraries. In:
Proceedings of the International Conference on Automated Plan-
ning and Schedulling (ICAPS’06) (2006)

Yu, J.Y., Mannor, S.: Piecewise-stationary bandit problems with
side observations. In: ICML’09: Proceedings of the 26th Annual
International Conference on, Machine Learning (2009)

Ollington, R.B., Vamplew, P.W.: Reinforcement learning for
dynamic goals and environments. Int. J. Intell. Syst. 20, 1037
(2005)

Fernandez, F., Borrajo, D.: Two steps reinforcement learning. Int.
J. Intell. Syst. 23(2), 213 (2008)

Chevaleyre, Y., Pamponet, A.M., Zucker, J.D.: Experiments with
adaptive transfer rate in reinforcement learning. Knowledge Acqui-
sition: Approaches, Algorithms and Applications (PKAW’ 2008).
In: Lecture Notes in Artificial Intelligence, vol. 5465 (2009)

@ Springer

	Learning domain structure through probabilistic policy reuse in reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Policy Reuse in reinforcement learning
	4 Reusing past policies
	4.1 The π-reuse exploration strategy
	4.2 A similarity function between policies
	4.3 The PRQ-learning algorithm

	5 Building a library of policies
	5.1 The PLPR algorithm
	5.2 Suboptimality of policy reuse

	6 Empirical results
	6.1 Parameter setting
	6.2 Computing the Reuse Gain with PRQ-learning
	6.3 Learning the structure of the domain

	7 Conclusions
	Acknowledgments
	References

